
Real Time Operating Systems for IEC 61508
Mike Medoff
www.exida.com

Abstract:

 In today’s world many potentially dangerous pieces of equipment are controlled by
embedded software. This equipment includes cars, trains, airplanes, oil refineries, chemical
processing plants, nuclear power plants and medical devices. As embedded software
becomes more pervasive so too do the risks associated with it. As a result, the issue of
software safety has become a very hot topic in recent years. The leading international
standard in this area is IEC 61508: Functional safety of electrical/electronic/ programmable
electronic safety-related systems. This standard is generic and not specific to any industry,
but has already spun off a number of industry specific derived standards, and can be applied
to any industry that does not have its own standard in place. Several industry specific
standards such as EN50128 (Railway), DO-178B (Aerospace), IEC 60880 (Nuclear) and IEC
601-1-4 (Medical Equipment), are already in place. Debra Herrmann (Herrmann, 1999) has
found a total of 19 standards related to software safety and reliability cut across industrial
sectors and technologies. These standards’ popularity is on the rise, and more and more
embedded products are being developed that conform to these standards. Since an
increasing number of embedded products also use an embedded real time operating system
(RTOS), it has become inevitable that products with an RTOS are being designed to conform
to such standards. This creates an important question for designers: how is my RTOS going
to effect my certification? This article will attempt to explore the challenges and advantages
of using an RTOS in products that will undergo certification.

Introduction:

Today, using a commercial RTOS is standard practice in many organizations. The
benefits of using a commercial RTOS vs. rolling your own or going without one are many. For
starters, it will help you structure your project into encapsulated software parts (tasks and
memory blocks) and save your own development team a lot of time and effort from creating
such infrastructure. With today’s tight budget and schedules, it is preferable to have your
team work on application code for your product rather than infrastructure that supports your
application. With the commercial RTOS, not only has this work already been done for you,
and is available to you, but it has presumably undergone tens of thousands of hours of actual
field usage making it much more mature and likely more reliable than any new code that
would be written. In addition, using a commercial RTOS typically includes a rich
development toolset that will help you to debug and monitor your applications. Having tools
that are aware of the operating system and how it works is a tremendous advantage when
trying to resolve complex design and debug issues.

 In addition to the aforementioned reasons for using a commercial RTOS in any product,
there are other advantages that a commercial RTOS can bring to safety applications. These
include memory protection, safe communications and secure task scheduling. These
services allow application programmers to readily include safety measures in their
application. Operating systems that have these features will save work and reduce risk for
their users. If operating systems do not have these features available, then the application
developer must build these features into their application.

Memory protection provides application and operating system data protection against
hardware faults and illegal writes. Many operating systems will isolate the address spaces of
different processes running on the OS. This protection, combined with a hardware MMU will
prevent one process from illegally writing over the data of another’s. This is a key feature that
supports applications of different safety integrity levels to run on the same processor. Doing

so has tremendous advantages when going through a certification. First off, it allows you to
identify non-safety critical tasks that do not need to be developed with the same level of rigor
in terms of process and on-line diagnostics. This can greatly simplify the effort involved in the
certification. Secondly, it allows you to use third party software in non safety critical areas
without having to certify that software. Having to certify third party software creates extra
challenges if you do not have the source code, lifecycle documentation, and/or cooperation
from the vendor. Without this memory protection, you must either use other measures to
assure this isolation, or consider all software to be safety critical and therefore subject to the
requirements of the highest safety integrity level of your product. You must essentially
assume that all software can corrupt the memory space of all other software and therefore
must be treated as safety critical.

When using this type of memory protection, there is one concern that should be

considered. If you are using a microcontroller that sends data between the core processor
and on-chip I/O devices via direct memory access (DMA), then these transactions are not
protected by the MMU. If any of the I/O devices are safety critical, then the non safety critical
applications either must not access these devices or additional protection measures will have
to be added to the code.

Other types of memory protection available include CRC checking on static areas of data

and code, duplicate storage, monitored heap management, and stack overflow detection.
CRC checking will detect hardware failures as well as illegal data writes. While a MMU may
protect illegal data writes from another process, illegal data writes within a process may still
occur and should be protected against. For static data that does not change at all or changes
very infrequently, a CRC should be used if the data is safety critical. Another alternative for
protection of safety critical data is duplicate storage with comparisons every time the data is
accessed. If duplicate storage is used, one copy should be inverted in order to detect
specific failures of bits being stuck at one or zero. Monitored heap management will ensure
that enough memory is available for dynamic memory allocation and can include some
checks for corruption. Stack overflow detection will detect the situation where the stack has
run out of space and has started overwriting other memory areas.

Communication of safety critical data is another area where a commercial RTOS can
make things easier. This includes both inter-processor communication and intra-process
communication. The use of the inter-processor communication is becoming more critical
when the system and hardware designers decide to partition the system in multiple
processors. This is a trend that can be seen even in smaller electronic control units such as
smart transmitters as the price for a single processor drops below the price of specific ICs.
Both of these types of communication can be risky when you have tasks of varying priorities
that can interrupt each other. If you are not extremely careful with the implementation it
becomes possible to send inconsistent data that was interrupted before gathering a complete
set. These types of problems are often very difficult to find and fix because they only occur
rarely and it is not easy to capture data when they do occur. However, when they do occur,
the system response could be an unsafe undetected failure. If the underlying operating
system uses queue based messaging between specific tasks with protected sender/receiver
information and message body then this problem can be solved at the operating system level.
Similarly, if the OS uses shared memory areas with controlled read/write access with
protected ownership information and content, the OS can take care of this issue for you as
well. Otherwise, you would have to include similar measures in your application code which
could create quite a bit of extra work.

 A secure task scheduling and monitoring mechanism that ensures that safety critical
tasks run when needed is another advantage that can be offered by a commercial RTOS.
This can be done using either deterministic scheduling, logical flow control monitoring as per
IEC 61508-2 or a time fence which will terminate the execution of a task if it over-runs its
allotted execution or deadline. These methods, when combined with a windowed external

hardware watchdog are highly effective in assuring that critical functions run at the rate that
they are required.

IEC 61508 Certification:

 Currently the IEC 61508 standard does not make any reference to RTOS software or
COTS (Commercial off the shelf software). This will be changing in the upcoming second
edition of the standard which will state that explicitly requiring that COTS software shall meet
the same requirements as newly developed software. This is essentially implied by the
current standard by not being mentioned, but now it will be specifically called out. Therefore,
when certifying your product, you must treat the OS just like any of your components.
Software certification consists of several different phases. First, the development process
used to create the software is analyzed. Then the software design is analyzed to determine
potential failure modes and measures implemented in the software. Herein lies the major
challenge of using a commercial operating system. Since the development process and
safety measures of the operating system is out of your control, how can you possibly hope to
get this product certified? Fortunately, there are several options here. The simplest option is
to use a certified operating system. There are real time operating systems on the market
have been certified to IEC 61508. Choosing one of these operating systems can take a lot of
headaches out of the process. The second option is to use a non-certified operating system
and include it as a component in your certification process. This option is more difficult, but it
can and has been done many times.

Certified Operating Systems:

 The major advantage of using a certified operating system is the reduction of risk, cost,
and time to market. Doing so eliminates the risk that the operating system component is not
able to be certified without changes that may be outside of your control. It gets rid of the cost
and time involved in certifying the operating system portion of your design. It eliminates the
cost and time involved in creating additional measures in your application code to avoid
potential faults in the operating system. And, it rules out the need to gather proven in use
data on the operating system.

Another advantage of using a certified RTOS is that it will provide a safety manual, which
provides guidance on how to safely use the operating system. This will include information
about which features and functions can and can’t be used safely as well as any procedures
that must be put in place to ensure safety. Also, a certified RTOS will provide some of the
features such as memory protection that will make it easier to design safety into your
application.

 These reasons make it quite attractive to use a certified operating system in your device
if at all possible. Of course, there are cases when this is just not practical. A common
example is the case where you have an already existing product that you are trying to certify.
This product may use a non-certified operating system, and the effort to switch operating
systems could be quite large. In addition, doing so could disrupt the reliability of a product
that has many hours of field proven runtime to its credit. In this case, switching to a new
operating system may add more risk and cost than it saves.

If switching operating systems is not an option, then you must follow the path of
implementing measures in your application code to ensure the safety of the operating
system. The best way to go about this is to do a software hazard analysis. This process
essentially consists of analyzing all of the components of the operating system to determine
what failure modes are possible. For each failure mode found, a measure must exist in the
product to ensure that the failure is safe. A safe failure is defined as one where the outputs
can be placed in the state that shuts down the process which is normally de-energized. A

hazard analysis is done by going through attributes of each component one by one and
applying guidewords to determine possible deviations. Possible causes and consequences
are then analyzed and possible safety measures are considered. Figure 1 shows a example
hazard analysis for one attribute of an operating system. Note that the purpose of this
example is just to give you a feel of how the hazard analysis is done and should not be
considered complete or correct.

Figure 1:

Keyword Interpretation Cause Consequence Safety
Measure

Reaction

No No process is
created

Latent
Fault in
Operating
System

Outputs will not be
updated

External
Watchdog
Timer

Processor
Reset -
Outputs set to
failsafe state

No No memory is
allocated

Insuffiient
Memory
Memory
Leak

Outputs can not be set
properly

Pointer
Validation

Outputs shut
down to
failsafe

Other
than

Other size of
memory is
allocated

Systematic
Error

May overwrite memory
of another process or
variable

Use of MMU to
protect
address space
CRC16 on all
static data

Outputs
shutdown to
failsafe state

Corrupt (Inherited)
process
parameters
are corrupted

Unitialized
Pointers
Array
Overflow

Outputs will not be
updated at correct
rate. In the worst case
a safety related
shutdown will not
occur in a timely
manner.

External
Watchdog
Timer

Processor
Reset -
Outputs set to
failsafe state

Part of User or
supervisor
stack are not
correctly
allocated

Latent
Fault in
operating
system

Stack overflow which
may lead to corruption
of other items in
memory

Stack overflow
checking

Processor
Reset -
Outputs in
failsafe state

No Memory
locking is not
inherited

Latent
Operating
System
Fault

Performance will be
impacted and tasks
may not be able to
complete on time.
Response to a
shutdown demand
may not be quick
enough

External
Watchdog
Timer

Process Reset
- Outputs to
failsafe state.

Corrupt Memory is
corrupted

Child and
parent
process
share the
same
memory
segments.
One may
destroy
the other’s
data

Outputs may not be
set to reliable state

Use of MMU to
protect
address space
CRC16 on all
static data

Outputs set to
failsafe state

The result of the hazard analysis will be a list of safety measures such as those shown in
column 5 of figure 1. These safety measures may be items that are already implemented in
your application or they may be new measures that you must add to your application. The
disadvantage of having to do this analysis on the operating system is obvious; it could be a

lot of work especially if it is discovered that many safety measures must be implemented.
However, it is not as bad as it might seem at first. Many of the safety measures that you
would need to implement for the operating system would also be beneficial to your
application and would end up being required anyway once you performed the hazard analysis
on your own application.

In conclusion, there are many well known advantages for using a commercial RTOS in your
product and as a result their use is quite widespread today. When using an RTOS in a safety
critical application there are some significant advantages and challenges in doing so. A good
operating system will actually have features that make it much easier to implement safety
functions and can be a big help in reducing the total amount of work required. However,
using a third party operating system introduces an area of risk that may be out of your
control. Fortunately, there are certified operating systems on the market that mitigate most of
this risk and there are accepted methods available for including a non-certified operating
system if necessary.

References

1. Herrmann, Debra S, Software Safety and Reliability, IEE Computer Society Press, Los

Alamitos, CA, 1999.

