¢

SCIOPTA

'

SCIOPTA Architecture Manual

vl.1l

Contents

1 SCIOPTA Real-Time Operating System
1.1 Introduction
1.2 CPU Families
1.3 SCIOPTA Kernels
1.4 About this Manual
1.5 SCIOPTA Reference Manual
1.6 SCIOPTA Getting Start Manuals

1.7 SCIOPTA Kernel Configuration SCONF Manuals

2 Introduction
2.1 SCIOPTA Kernel V2
3 Modules
3.1 Introduction
3.2 System Module
3.3 Module Priority
3.3.1 Kernel V1
3.3.2 Kernels V2 and V2INT
3.4 System Protection
3.5 SCIOPTA Module Friend Concept
3.5.1 Kernel V1
3.5.2 Kernels V2 and V2INT
3.6 Module Creation
3.6.1 Static Module Creation
3.6.2 Dynamic Module Creation
4 Processes
4.1 Introduction
4.2 Process States
4.2.1 Running
4.2.2 Ready
4.2.3 Waiting
4.3 Static Processes
4.4 Dynamic Processes
4.5 Process ldentity
4.6 Prioritized Processes 4#

4.6.1 Creating and Declaring Prioritized Processes

4.6.2 Process Priorities
4.6.3 Writing Prioritized Processes

4.6.3.1 Process Declaration Syntax

4.6.3.2 Process Template
4.7 Interrupt Processes W,

4.7.1 Creating and Declaring Interrupt Processes

4.7.2 Interrupt Process Priorities
4.7.3 Writing Interrupt Processes

4.7.3.1 Interrupt Process Declaration Syntax
4.7.3.2 Interrupt Source Parameter irq_src
4.7.3.3 Interrupt Source Parameter Values
4.7.3.4 Interrupt Vector Parameter vector

© © © © 00 W W W o O O O O O O o o1 o O 01 01 & W NDNDNDNDNDNERELPRP P

B R R R R R R R R R R RRRR
W NDNMNMNMNMNMDNMRERRRPERRELROOODO

4.7.3.5 Interrupt Process Template for Kernel V1

4.7.3.6 Interrupt Process Template for Kernels V2 and V2INT

4.8 Timer Processes (&)
4.8.1 Creating and Declaring Timer Processes
4.8.2 Timer Process Priorities
4.8.3 Writing Timer Processes
4.9 Init Processes x
4.9.1 Creating and Declaring Init Processes
4.9.2 Init Process Priorities
4.9.3 Writing Init Processes
4.10 Daemons
4.10.1 Process Daemons
4.10.2 Kernel Daemon
4.11 Process Stacks
4.11.1 Unified Interrupt Stack for ARM Architecture
4.11.2 Interrupt Nesting for ARM Architecture
4.12 Stack Protector
4.13 Addressing Processes
4.13.1 Introduction
4.13.2 Get Process IDs of Static Processes
4.13.3 Get Process IDs of Dynamic Processes
4.14 Process Variables
4.15 Process Observation
5 Messages
5.1 Introduction
5.2 Message Structure
5.3 Message Size
5.3.1 Example
5.4 Message Pool
5.5 Message Passing
5.6 Message Declaration
5.6.1 Message ldentifier
5.6.1.1 Description
5.6.1.2 Syntax
5.6.1.3 Parameter
5.6.2 Message Structure
5.6.2.1 Description
5.6.2.2 Syntax
5.6.2.3 Parameter
5.6.3 Message Union
5.6.3.1 Description
5.6.3.2 Syntax
5.6.3.3 Parameter
5.7 Message Number (ID) Organization
5.7.1 Global Message Number Defines File
5.8 Example
5.9 Messages and Modules
5.10 Returning Sent Messages

13
13
14
14
14
14
15
15
16
16
16
16
17
17
18
18
18
18
18
19
19
19
20
22
22
22
23
23
23
23
24
24
24
25
25
25
25
25
25
25
25
25
26
26
26
26
26
27

5.11 Message Passing and Scheduling
5.12 Message Sent to Unknown Process
5.12.1 Example
6 Pools
6.1 Message Pool Size
6.2 Creating Pools
6.2.1 Static Pool Creation
6.2.2 Dynamic Pool Creation
7 Hooks
7.1 Introduction
7.2 Error Hook
7.3 Message Hooks
7.4 Process Hooks
7.5 Pool Hooks
8 System Start and Setup
8.1 Start Sequence
8.2 Reset Hook
8.2.1 Syntax
8.2.2 Parameter
8.2.3 Return Value
8.2.4 Location
8.3 C Startup
8.4 Starting the SCIOPTA Simulator
8.4.1 Module Data RAM
8.5 Start Hook
8.5.1 Syntax
8.5.2 Parameter
8.5.3 Return Value
8.5.4 Location
8.6 Init Process
8.7 Module Start Functions
8.7.1 System Module Start Function
8.8 User Module Start Function
9 SCIOPTA Trigger
9.1 Description
9.2 Using SCIOPTA Trigger
10 Time Management
10.1 Introduction
10.2 System Tick
10.3 Configuring the System Tick
10.4 External Tick Interrupt Process
10.5 Tickless System
10.6 Timeout Server
10.6.1 Introduction
10.6.2 Using the Timeout Server
11 Error Handling
11.1 Introduction
11.2 Error Sequence Kernel V1

27
28
29
29
29
30
30
30
31
31
31
31
31
31
32
32
32
32
33
33
33
33
33
33
33
34
34
34
34
34
34
34
35
36
36
36
38
38
38
38
38
38
38
38
38
39
39
39

11.3 Error Sequence Kernel V2 and V2INT
11.4 Error Hook Kernel V1
11.5 Error Hook Kernel V2 and V2INT
11.6 Error Information
11.7 Error Hook Registering
11.8 Error Hook Declaration Syntax Kernel V1
11.8.1 Description
11.8.2 Syntax
11.8.3 Parameter
11.8.4 Error Hook Example

11.9 Error Hook Declaration Syntax Kernel V2 and V2INT

11.9.1 Description
11.9.2 Syntax
11.9.3 Parameter
11.9.4 Kernel Error Message Structure
11.9.4.1 Structure Members

11.9.5 Header Files
11.9.6 Error Hook Example

11.10 Error Hooks Return Behaviour Kernel V1

11.11 Error Process Kernel V2 and V2INT
11.11.1 Error Process Registering
11.11.2 Example of an Error Process

11.12 The Error Proxy Kernel V2 and V2INT
11.12.1 Example

11.13 The errno Variable

12 Distributed Systems

12.1 Introduction

12.2 Connectors

12.3 Transparent Communication

12.4 Unknown Process

13 Manual Versions

13.1 Initial

13.2 Typos

13.3 Chapter folding

39
40
40
41
42
42
42
42
42
43
43
43
43
43
44
44
45
45
45
46
46
46
46
47
47
48
48
48
48
49
50
50
50
50

SCIOPTA Architecture Manual v1.1

Abstract

This document describes the SCIOPTA Architecture Manual for the SCIOPTA Kernels.

Copyright

Copyright © 2022 by SCIOPTA Systems GmbH. All rights reserved. No part of this publication may be reproduced,
transmitted, stored in a retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, optical, chemical or otherwise, without the prior written permission of SCIOPTA
Systems GmbH. The Software described in this document is licensed under a software license agreement and
maybe used only in accordance with the terms of this agreement.

Disclaimer

SCIOPTA Systems GmbH, makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability of fitness for any particular purpose. Further,
SCIOPTA Systems GmbH, reserves the right to revise this publication and to make changes from time to time in the
contents hereof without obligation to SCIOPTA Systems GmbH to notify any person of such revision or changes.

Trademark

SCIOPTA is a registered trademark of SCIOPTA Systems GmbH.

Contact

Corporate Headquarters
SCIOPTA Systems GmbH
Hauptstrasse 293

79576 Weil am Rhein
Germany

Tel. +49 7621 9409190
Fax +49 7621 940 919 19
email: sales@sciopta.com

www.sciopta.com

- ;
SCIOPTA \
-

mailto:sales@sciopta.com

SCIOPTA Architecture Manual v1.1

1 SCIOPTA Real-Time Operating System

1.1 Introduction

SCIOPTA is a high performance fully pre emptive real-time operating system for hard real-time application available
for many target platforms.

Available modules:

* Pre-emptive Multitasking Real-Time Kernel
¢ SCIOPTA Memory Management System, Support for MMU/MPU
e Board Support Packages

¢ IPS Internet Protocols (TCP/IP) including IPS Applications (Web Server, TFTP, FTP, DNS, DHCP, Telnet and
SMTP)

e FAT File System

* SAFE FAT File System

¢ Flash File System, NOR and NAND
e Universal Serial Bus, USB Device
 Universal Serial Bus, USB Host

* DRUID System Level Debugger including kernel awareness packages for source debuggers

SCIOPTA PEG Embedded GUI

¢ CONNECTOR support for distributed multi CPU systems

* SCAPI SCIOPTA API for Windows or LINUX hosts or other OS
e SCSIM SCIOPTA Simulator

SCIOPTA Real-Time Operating System contains design objects such as SCIOPTA modules, processes, messages
and message pools. SCIOPTA is designed on a message based architecture allowing direct message passing
between processes. Messages are mainly used for interprocess communication and synchronization. SCIOPTA
messages are stored and maintained in memory pools. The memory pool manager is designed for high
performance and memory fragmentation is avoided. Processes can be grouped in SCIOPTA modules, which allows
you to design a very modular system. Modules can be static or created and killed during run-time as a whole.
SCIOPTA modules can be used to encapsulate whole system blocks (such as a communication stack) and protect
them from other modules in the system.

The SCIOPTA Real-Time Kernel has a very high performance. The SCIOPTA architecture is specifically designed
to provide excellent real time performance and small size. Internal data structures, memory management,
interprocess communication and time management are highly optimized. SCIOPTA Real-Time kernels will also run
on small single-chip devices without MMU.

1.2 CPU Families

SCIOPTA is delivered for many CPU architectures such as the various Arm Ltd. families, RX (Renesas), Power
architecture (NXP, STM), Blackfin (Analog Devices) and Aurix (Infineon).

Please consult the latest version of the SCIOPTA Price List for the complete list or ask our sales team if you are
missing a specific architecture.

Initially mainly used in the automation and process control industry, IEC 61508 is more and more accepted for
applications in other industries including automotive and medical where safety and reliability are paramount.

1 -
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

1.3 SCIOPTA Kernels

There are three Kernels (Technologies) within SCIOPTA: V1, V2 and V2INT. The V1 Kernels are written in 100%
Assembler and are specifically tuned for the ARM Architectures. V2 Kernels are mostly written in "C" and available
for many CPUs and Architectures. V2INT kernels have built-in integrity of RTOS data to be used in safety certified
systems.

All three Kernels certified by TUeV Sued Munich to IEC61508 SIL 3, EN50128 SIL 3/4 and 1SO26262 ASIL-D.

1.4 About this Manual

This SCIOPTA Architecture Manual contains a detailed description and introduction into SCIOPTA working
concepts, structures and elements.

1.5 SCIOPTA Reference Manual

The SCIOPTA Reference Manual contains the reference of all system calls in alphabetical order and the SCIOPTA
error handling .

1.6 SCIOPTA Getting Start Manuals

The SCIOPTA Getting Start Manuals gives all needed information how to use SCIOPTA Real-Time Kernel in an
embedded project for specific CPU Families.

1.7 SCIOPTA Kernel Configuration SCONF Manuals

The SCIOPTA kernel system needs to be configured before you can generate the whole system. The SCIOPTA
configuration utility SCONF Manual gives all needed information and the parameters to be defined such as name of
systems, static modules, processes, and pools, etc.

<z 2
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

2 Introduction

SCIOPTA is a pre-emptive multi-tasking high performance real-time operating system (RTOS) for using in
embedded systems. SCIOPTA is a so-called message based RTOS that is, interprocess communication and
coordination are realized by messages.

SCIOPTA
Process

SCIOPTA
Message

SCIOPTA
Process

Figure 1. Messag Based RTOS

A typical system controlled by SCIOPTA consists of a number of more or less independent tasks called processes.
Each process can be seen as if it has the whole CPU for its own use. SCIOPTA controls the system by activating
the correct processes according to their priority assigned by the user. Occurred events trigger SCIOPTA to
immediately switch to a process with higher priority. This ensures a fast response time and guarantees the
compliance with the real-time specifications of the system.

In SCIOPTA processes communicate and cooperate by exchanging messages. Messages can have a content to
move data from one process to the other or can be empty just to coordinate processes. Often, process switches
can occur as a result of a message transfer. Besides data and some control structures, messages contain also an
identity (number). This is used by processes to recognize the different message and also allows to select which
messages to receive from the message queue FIFO. All other messages are kept back in the message queue of
the process.

Messages are dynamically allocated from a message pool.
There are three Kernels within SCIOPTA, please see chapter "SCIOPTA Kernels" in the Kernel Reference Manual
for more information.

3 -
SCIOPTA
-«

SCIOPTA_KernelReference.pdf#kernels

SCIOPTA Architecture Manual v1.1

2.1 SCIOPTA Kernel V2

SCIOPTA Real-Time Kernel V2 (Version 2) is the successor to the SCIOPTA standard kernel V1 (Version 1).

Differences between SCIOPTA Kernel V2 and V1:

Module priority: No process inside a module is allowed to have a higher priority than modules’s maximum
priority.

Module friendship concept has been removed.

System calls sc_procPathGet and sc_procNameGet return NULL if PID valid, but does not exist anymore.

Time slice for prioritized processes is now fully supported and documented.

The system call sc_procSliceSet is only allowed within same module.

Parameter n in system call sc procVarInit is now real maximum number of process variables. It was n+1
before.

The activation time is set when a process becomes ready.

The activation time is saved for sc_msgRx in prioritized processes.
System call sc_sleep returns now the activation time.

The error handling has been modified.

Error hook API changed.

Error process and error proxy introduced.

New system calls:

- sc_moduleCreate? call replaces the call sc_moduleCreate. It gets the module parameters now from a
module descriptor block (mdb).

- sc_modulePrioGet Returns the priority of a module.

- sc_moduleStop Stops a whole module.
- sc_procAtExit Register a function to be called if a prioritized process is killed.
- sc_procAttrGet Returns specific process attributes.

- sc procCreate2 call replaces the calls sc_procPrioCreate, sc procIntCreate and sc procTimCreate. The
process parameters now defined in a process descriptor block (pdb).

- sc_msgHdChk Integrity check of message header.

- sc_msaFind Finds messages which have been allocated or already received.

- sc_tickActivationGet Returns the tick time of last activation of the calling process.
- sc_miscCrc32 Calculates a 32 bit CRC over a specified memory range.

- sc_miscCrc32Contd Calculates a 32 bit CRC over an additional memory range.

<z
SCIOPTA 4
-«

SCIOPTA_KernelReference.pdf#sc_procPathGet
SCIOPTA_KernelReference.pdf#sc_procNameGet
SCIOPTA_KernelReference.pdf#sc_procSliceSet
SCIOPTA_KernelReference.pdf#sc_procVarInit
SCIOPTA_KernelReference.pdf#sc_msgRx
SCIOPTA_KernelReference.pdf#sc_sleep
SCIOPTA_KernelReference.pdf#sc_moduleCreate2
SCIOPTA_KernelReference.pdf#sc_modulePrioGet
SCIOPTA_KernelReference.pdf#sc_moduleStop
SCIOPTA_KernelReference.pdf#sc_procAtExit
SCIOPTA_KernelReference.pdf#sc_procAttrGet
SCIOPTA_KernelReference.pdf#sc_procCreate2
SCIOPTA_KernelReference.pdf#sc_procPrioCreate
SCIOPTA_KernelReference.pdf#sc_procIntCreate
SCIOPTA_KernelReference.pdf#sc_procTimCreate
SCIOPTA_KernelReference.pdf#sc_msgHdChk
SCIOPTA_KernelReference.pdf#sc_msgFind
SCIOPTA_KernelReference.pdf#sc_tickActivationGet
SCIOPTA_KernelReference.pdf#sc_miscCrc32
SCIOPTA_KernelReference.pdf#sc_miscCrc32Contd

SCIOPTA Architecture Manual v1.1

3 Modules

3.1 Introduction

SCIOPTA allows you to group processes into functional units called modules. Very often you want to decompose a
complex application into smaller units which you can realize in SCIOPTA by using modules. This will improve
system structure. A SCIOPTA process can only be created from within a module.

A typical example would be to encapsulate a whole communication stack into one module and to protect it against
other function modules in a system.

When creating and defining modules the maximum number of pools and processes must be defined. There is a
maximum number of 128 modules per SCIOPTA system possible.

3.2 System Module

There is always one static module in a SCIOPTA system.

This module is called system module (sometimes also nhamed module 0) and is automatically created by the kernel
at system start.

3.3 Module Priority

SCIOPTA modules contain a (module) priority.

3.3.1 Kernel V1

For process scheduling SCIOPTA uses a combination of the module priority and process priority called effective
priority. The kernel determines the effective priority as follows:

Effective Priority = Module Priority + Process Priority

The effective priority has an upper limit of 31 which will never be exceeded even if the addition of module priority
and process priority is higher. This technique assures that the process with highest process priority (0) cannot
disturb processes in modules with lower module priority (module protection).

3.3.2 Kernels V2 and V2INT

This module priority defines a maximum priority level for all processes contained inside that module. The kernel will
generate an error, if a process is created which has a higher priority than the module priority.

This guarantees that modules with low priority tasks do not interrupt high priority modules.

3.4 System Protection

In larger systems it is often necessary to protect certain areas to be accessed by others. In SCIOPTA the user can
achieve this by grouping processes into modules creating sub-systems which can be protected.

Full protection is achieved if memory segments are isolated by a hardware Memory Management Unit (MMU). In
SCIOPTA such protected memory segments would be laid down at module boundaries.

System protection and MMU support is optional in SCIOPTA.

5 -
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

3.5 SCIOPTA Module Friend Concept

3.5.1 Kernel V1

SCIOPTA supports also the "friend" concept. Modules can be "friends" of other modules. This has mainly
consequences on whether message will be copied or not at message passing.

A module can be declared as friend by the sc_moduleFriendAdd system call. The friendship is only in one direction.
If module A declares module B as a friend, module A is not automatically also friend of Module B. Module B would
also need to declare Module A as friend by the sc_moduleFriendAdd system call.

Each module maintains a 128 bit wide bit field for the declared friends. For each friend a bit is set which
corresponds to its module ID.

3.5.2 Kernels V2 and V2INT

Not supported!

3.6 Module Creation

3.6.1 Static Module Creation

Static modules are modules which are automatically created when the systems boots up. They are defined in the
SCONF configuration tool. Please consult the CPU-Specific SCIOPTA System Manuals for more information.

FaSciopta System Configuration C:/P/titi.xml

File Edit PowerPcTarget Help

1D @ o

Configuration Tree Stucture
scigpta TC5 For
=- EE; MewT a EE:H

- 3 Newi¥ arge

Create Module £

Delete Target

Build Temporary File

Change Build Directory

Figure 2. Static Module Creation with SCONF Tool

3.6.2 Dynamic Module Creation

Modules can also be created dynamically by the sc_moduleCreate (Kernel V1) or the sc_moduleCreate? (Kernels V2
and V2INT) system calls.

Dynamic Module Creation Kernel V1

sc_moduleid_t sc_moduleCreate(
const char *name,
void (*init) (void),
sc_bufsize_t stacksize,
sc_prio_t moduleprio,
char *start,
sc_modulesize_t size,
sc_modulesize_t initsize,
unsigned int max_pools,
unsigned int max_procs

);

- 6
SCIOPTA
-«

SCIOPTA_KernelReference.pdf#sc_moduleFriendAdd
SCIOPTA_KernelReference.pdf#sc_moduleFriendAdd
SCIOPTA_KernelReference.pdf#sc_moduleCreate
SCIOPTA_KernelReference.pdf#sc_moduleCreate2

SCIOPTA Architecture Manual v1.1

Dynamic Module Creation Kernels V2 and V2INT

sc_moduleid_t sc_moduleCreate2(
sc_mdb_t *mdb // Pointer to the module descriptor block
)5

7 <>
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

4 Processes

4.1 Introduction

An independent instance of a program running under the control of SCIOPTA is called process. SCIOPTA is
assigning CPU time by the use of process priority and guarantees that at every instant of time, the most important
process ready to run is executing. The system interrupts processes if other processes with higher priority must
execute (become ready).

All SCIOPTA processes have system wide unique process identities.

A SCIOPTA process is always part of a SCIOPTA module. Please consult chapter Modules for more information
about SCIOPTA modules.

4.2 Process States

A process running under SCIOPTA is always in the RUNNING, READY or WAITING state.

READY }7
A

dispatch preemption

RUNNING }

tx (transmit)

stop process

start transmitt

process message
(higher receive
priority)

start process (lower or same priority

WAITING

Figure 3. State Diagram of SCIOPTA Kernel

4.2.1 Running

If the process is in the running state it executes on the CPU. Only one process can be in running state in a single
CPU system.

-
SCIOPTA 8
-

SCIOPTA Architecture Manual v1.1

4.2.2 Ready

If a process is in the ready state it is ready to run meaning the process needs the CPU, but another process with
higher priority is running.

4.2.3 Waiting

If a process is in the waiting state it is waiting for events to happen and does not need the CPU meanwhile. The
reasons to be in the waiting state can be:

e The process tried to receive a message which has (not yet) arrived.

e The process waits for a delay to expire.

e The process waits on a SCIOPTA trigger.

¢ The Process waits to be started.

4.3 Static Processes

Static processes are created by the kernel at start-up. They are designed inside a configuration utility by defining
the name and all other process parameters. At start-up the kernel puts all static created processes into READY or
WAITING (stopped) state.

Static processes are supposed to stay alive as long as the whole system is alive. But nevertheless in SCIOPTA
static processes can be killed at run-time but they will not return their used memory.

i Sciopta System Configuration C:/P/tcs.xml 10| x|

File Edit PriorityProcess Help

M=

Configuration Tree Structure I
scﬁpm TCS

- $ETCS
=TS
P st

lh' kepboard

® hatplug

- 4 display
5 syzpool
B- $# Chamber_&
»‘(' it
th sensor
-y oven
- 43F driver
. 4% controller
. 30 refererce
é ChamnberPool

Friority Process Mame
Friarity Process Function
Stack Size

Pricrity

Process State

Isyscontrol
INewPrioProcess‘I

128

16 =

I started 'I

Apply

Lancel

Figure 4. Process Configuration Window for Static Processes

4.4 Dynamic Processes

Dynamic processes can be created and killed during run-time. Often dynamic processes are used to run multiple
instances of common code. The number of instances is only limited by system resources.

Another advantage of dynamic processes is that the resources such as stack space will be given back to the
system after a dynamic process is killed.

9 -
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

Create Process System Call (prioritzed process for Kernel V1)

sc_pid_t sc_procPrioCreate(
const char *name,
void (*entry) (void),
sc_bufsize_t stacksize,
sc_ticks_t slice,
sc_prio_t prio,
int state,
sc_poolid_t plid

)8

Create Process System Call (Kernel V2)

sc_pid_t sc_procCreate2(
sc_pdb_t *pdb,
int state,
sc_poolid_t plid

’

4.5 Process ldentity

Each process has a unique process identity (process ID) which is used in SCIOPTA system calls when processes
need to be addressed.

The process ID will be allocated by the operating system for all processes which you have entered during SCIOPTA
configuration (static processes) or will be returned when you are creating processes dynamically. The kernel
maintains a list with all process names and their process IDs.

The user can get Process IDs by using the sc_procldGet system call including the process name.

4.6 Prioritized Processes

In SCIOPTA a process can be seen as independent tasks. SCIOPTA guarantees that always the most important
process at a certain moment is executing. Each prioritized process has a priority and the SCIOPTA scheduler is
giving CPU time to processes according to these priorities. The process with higher priority runs (gets the CPU)
before the process with lower priority.

If a process has terminated its job for the moment by for example waiting on a message which has not yet been
sent or by calling the kernel sleep function, the process is put into the waiting state and is not any longer ready.

Most of the time in a SCIOPTA real-time system is spent in prioritized processes. It is where collected data is
analysed and complicated control structures are executed.

Prioritized processes respond much slower than interrupt processes, but they can spend a relatively long time to
work with data.

4.6.1 Creating and Declaring Prioritized Processes

Static prioritized processes are defined in the SCIOPTA configuration utility (SCONF) and created by the kernel
automatically at system startup. Please consult the CPU-Specific SCIOPTA System Manuals for more information.

Dynamic prioritized processes are created by using the sc procPrioCreate (Kernel V1) or the sc procCreate?
(Kernels V2 and V2INT) system call and killed dynamically with the sc_procKill system call.

4.6.2 Process Priorities

Each SCIOPTA process has a specific priority. The user defines the priorities at system configuration or when
creating the process. Process priorities can be modified during run-time.

By assigning a priority the user designs groups of processes or parts of systems according to response time

sC ﬁPTA 10
-«

SCIOPTA_KernelReference.pdf#sc_procIdGet
SCIOPTA_KernelReference.pdf#sc_procPrioCreate
SCIOPTA_KernelReference.pdf#sc_procCreate2
SCIOPTA_KernelReference.pdf#sc_procKill

SCIOPTA Architecture Manual v1.1

requirements. Ready processes with high priority are always interrupting processes with lower priority. Subsystems
with high priority processes have therefore faster response time. Priority values for prioritized processes in
SCIOPTA can be from 0 to 31. 0 is the highest and 31 the lowest priority level.

Kernel V1:

For process scheduling SCIOPTA uses a combination of the module priority and process priority called
effective priority. The kernel determines the effective priority as follows:

Effective Priority = Module Priority + Process Priority

Kernels V2 and V2INT:
The process priority cannot be higher than the module priority of the module where the process resides.

See also chapter "Module Priority";

4.6.3 Writing Prioritized Processes

4.6.3.1 Process Declaration Syntax
All prioritized processes in SCIOPTA must contain the following declaration:

SC_PROCESS(<proc_name>)
{
for (;7)

* Code for process <proc_name> */

4.6.3.2 Process Template

#include <sciopta.h> /* SCIOPTA standard prototypes and definitions */
SC_PROCESS(proc_name) /* Declaration for prioritized process proc_name */

x /

* Local variables

* Process initialization code */
for (;;) /* "for-ever"-loop declaration. */
* A SCIOPTA prioritized process may never return */
/* Tt is an error to terminate a prioritized process */
/* 1If a prioritized process terminates and returns
/* the SCIOPTA kernel will produce an error condition */

/* and call the SCIOPTA error hook */

/* Code for process proc_name */

4.7 Interrupt Processes sk,

An interrupt is a system event generated by a hardware device. The CPU will suspend the current running program
and activates an interrupt service routine assigned to this interrupt.

The programs which handle interrupts are called interrupt processes in SCIOPTA. SCIOPTA is channelling
interrupts internally and calls the appropriate interrupt process.

Interrupt process is the fastest process type in SCIOPTA and will respond almost immediately to events. As the
system is blocked during interrupt handling interrupt processes must perform their task in the shortest time

-
11 SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

possible. By default, SCIOPTA does not allow interrupt nesting. If the user application needs it, the interrupts must
be released inside the interrupt process. Consult the SCIOPTA Systems Manuals on how this can be done.

A typical example is the control of a serial line. Receiving incoming characters might be handled by an interrupt
process by storing the incoming arrived characters in a local buffer returning after each storage of a character. If
this takes too long characters will be lost. If a defined number of characters of a message have been received the
whole message will be transferred to a prioritized process which has more time to analyse the data.

4.7.1 Creating and Declaring Interrupt Processes

Static interrupt processes are defined in the SCIOPTA configuration utility (SCONF) and created by the kernel
automatically at system startup.

Kernel V1:
Dynamic interrupt process are created by using the sc procIntCreate system call and killed dynamically
with the sc_procKill system call.

Kernels V2 and V2INT:
Dynamic interrupt process are created by using the sc _procCreate? system call and killed dynamically with
the sc_procKill system call.

4.7.2 Interrupt Process Priorities

The priority of an interrupt process is assigned by hardware of the interrupt source.

4.7.3 Writing Interrupt Processes
4.7.3.1 Interrupt Process Declaration Syntax

SC_INT_PROCESS(<proc_name>, <irg_src>)
{

/* Code for interrupt process <proc_name> */
}
SC_INT_PROCESS_EX(<proc_name>, <irq_src>, <vector>)
{

* Code for interrupt process <proc_name> */

}
4.7.3.2 Interrupt Source Parameter irq_src

This parameter is set by the kernel depending on the interrupt source.

4.7.3.3 Interrupt Source Parameter Values

SC_PROC_WAKEUP_HARDWARE The interrupt process is activated by a real hardware interrupt.

SC_PROC_WAKEUP_MESSAGE The interrupt process is activated by a message sent to the interrupt
process.

SC_PROC _WAKEUP_TRIGGER The interrupt process is activated by a trigger event.

SC_PROC_WAKEUP_START The interrupt process is activated when the process is started.

(Only for Kernels V2 and V2INT)

sC 6P'I'A 12
-«

SCIOPTA_KernelReference.pdf#sc_procIntCreate
SCIOPTA_KernelReference.pdf#sc_procKill
SCIOPTA_KernelReference.pdf#sc_procCreate2
SCIOPTA_KernelReference.pdf#sc_procKill

SCIOPTA Architecture Manual v1.1

SC_PROC WAKEUP_CREATE The interrupt process is activated when the process is created. This
allows the interrupt process to execute some initialization code.

SC_PROC_WAKEUP_KILL The interrupt process is activated when the process is killed. This
allows the interrupt process to execute some exit code.

SC_PROC_WAKEUP_STOP The interrupt process is activated when the process is stopped.
(Only for Kernels V2 and V2INT).

SC_PROC_WAKEUP_CALLBACK The callback is called. (Only SCIOPTA Simulator)

4.7.3.4 Interrupt Vector Parameter vector

This is the hardware interrupt vector which did activate the interrupt process.

See sc_proclrgRegister for more information.

4.7.3.5 Interrupt Process Template for Kernel V1

#include <sciopta.h> /* SCIOPTA standard prototypes and definitions */

SC_INT_PROCESS(proc_name, irq_src)/* Declaration for interrupt process proc_name */

{
/* Local variables */

switch (irq_src) {

case SC_PROC_WAKEUP_HARDWARE: /* Generated by hardware */
/* Code for hardware interrupt handling */

break;

case SC_PROC_WAKEUP_CREATE: /* Generated when process created */

/* Initialization code */

break;

case SC_PROC_WAKEUP_KILL: /* Generated when process killed */
* Exit code */

break;

case SC_PROC_WAKEUP_MESSAGE: /* Generated by a message sent to */
* this interrupt process */
/* Code for receiving a message */
break;
case SC_PROC_WAKEUP_TRIGGER: /* Generated by a SCIOPTA trigger event */
/* Code for trigger event handling */
break;
default:
/* Error handling sc_miscError()
break;

4.7.3.6 Interrupt Process Template for Kernels V2 and V2INT

#include <sciopta.h> /* SCIOPTA standard prototypes and definitions */
SC_INT_PROCESS(proc_name, irq_src)/* Declaration for interrupt process proc_name */
* Local variables */
switch (irq_src) {
case SC_PROC_WAKEUP_HARDWARE: /* Generated by hardware */
/* Code for hardware interrupt handling */
break;

case SC_PROC_WAKEUP_CREATE: /* Generated when process created */
/* Initialization code */

break;

case SC_PROC_WAKEUP_KILL: /* Generated when process killed */
/* Exit code */

break;

13 SCIOPTA
-«

SCIOPTA_KernelReference.pdf#sc_procIrqRegister

SCIOPTA Architecture Manual v1.1

case SC_PROC_WAKEUP_MESSAGE: Generated by a message sent to */
this interrupt process */

/* Code for receiving a message */

break;

case SC_PROC_WAKEUP_TRIGGER: /* Generated by a SCIOPTA trigger event */
/* Code for trigger event handling */

break;

case SC_PROC_WAKEUP_STOP: /* Generated when process is stopped */
/* Stop code */

break;

case SC_PROC_WAKEUP_START: /* Generated when process is started */
/* Start code */

break;

default:
/* Error handling sc_miscError() */

break;

}

}

4.8 Timer Processes ®

A timer process in SCIOPTA is a specific interrupt process connected to the tick timer of the operating system.
SCIOPTA is calling each timer process periodically.

When configuring or creating a timer process, the user defines the period in numer of ticks.
Timer processes will be used for tasks which need to be executed at precise periodic intervals.

As the timer process runs on interrupt level it is as important as for normal interrupt processes to return as fast as
possible.

4.8.1 Creating and Declaring Timer Processes

Static timer processes are defined in the SCIOPTA configuration utility (SCONF) and created by the kernel
automatically at system startup.

Kernel V1:
Dynamic interrupt process are created by using the sc procTimCreate system call and killed dynamically
with the sc_procKill system call.

Kernels V2 and V2INT:
Dynamic interrupt process are created by using the sc _procCreate? system call and killed dynamically with
the sc_procKill system call.

4.8.2 Timer Process Priorities

The timer processes are bound to the system tick. Therefore they run with the same hardware priority as the tick
interrupt.

4.8.3 Writing Timer Processes

Timer processes are written exactly the same way as interrupt processes. Please consult chapter "Writing Interrupt
Processes" for information how to write interrupt processes.

Unlike interrupts, timer processes can be stopped and started Kernel V1 and Kernel V2/V2INT.

sC ﬁPTA 14
-«

SCIOPTA_KernelReference.pdf#sc_procTimCreate
SCIOPTA_KernelReference.pdf#sc_procKill
SCIOPTA_KernelReference.pdf#sc_procCreate2
SCIOPTA_KernelReference.pdf#sc_procKill

SCIOPTA Architecture Manual v1.1

4.9 Init Processes &
The init process is the first process in a module. Each module has at least one process and this is the init process.

At module start the init process gets automatically the highest priority (0). After the init process has done some
work, the user can change the process priority. If the user does not change the priority, SCIOPTA it will set the
priority to a specific lowest level (32) and enter an endless loop.

The init process acts therefore also as idle process which will run when all other processes of a module are in the
waiting state.

4.9.1 Creating and Declaring Init Processes

In static modules the init process is written, created and started automatically. Static modules are defined and
configured in the SCONF configuration utility. The code of the init process is generated automatically by the
SCONF configuration tool and included in the file sconf.c. The init process function name will be set automatically
by the kernel in sconf.c to: <module_name>_init. The init process of the system module will create all static
SCIOPTA objects such as other modules, processes and pools.

In dynamic modules the init process is also created and started automatically. But the code of the init process must

be written by the user. The entry point of the init process is given as parameter of the dynamic module create
system calls. Please see below for more information how to write init processes for dynamic modules.

15 SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

4.9.2 Init Process Priorities

At start-up the init process gets the highest priority (0).

After the init process has done its work it will change its priority to a specific lowest level (32) and enter an endless
loop.

Priority 32 is only allowed for the init process. All other processes are using priority 0 - 31.

4.9.3 Writing Init Processes

Statically created init processes call a user function (module hook) which is named like the module. This user
function can be empty or does not have to return.

Example: Module "dev", module hook:

void dev()
{
sc_procPrioSet(31);

for(;;){
heartBeat();

Only init processes of dynamic modules must be written by the user. The entry point of the init process is given as
parameter of the dynamic module create system calls. At start-up the init process gets the highest priority (0). The
user must set the priority to 32 at the end of the init process code.

Template of a minimal init process of a dynamic module:

SC_PROCESS(dynamicmodule_init)
{

’* Important init work on priority level @ can be included here */
sc_procPrioSet(32);
for(;;) ASM_NOP; /* init is now the idle process */

4.10 Daemons

Daemons are internal processes in SCIOPTA and are structured the same way as ordinary processes. They have a
process control block (pcb), a process stack and a priority.

4.10.1 Process Daemons

The process daemon (sc_procd) is identifying processes by name and supervises created and killed processes.

Whenever you are using the sc_procldGet system call you need to start the process daemon.

sC ﬁPTA 16
-«

SCIOPTA_KernelReference.pdf#sc_procIdGet

SCIOPTA Architecture Manual v1.1

Configuration Tree Structure |

sclgpe HelloSciopta
- 2% HelloSciopta
B # HelloSciopta

----- ¥ sc_procd

o P hell

Priority Process Name
Priorty Process Function
Stack Size

Pricrity

Process State

Process Mode

E—
Eem]
2043

I
[sated =]

ISLIDEWiSDr "l
Inu:u FPU "I

FPU usage

* Process Daemon

Figure 5. Process Daemon Declaration in SCONF

The process daemon is part of the kernel. But to use it you need to define and declare it in the SCONF
configuration utility.

The process daemon can only be created and placed in the system module.

4.10.2 Kernel Daemon

The Kernel Daemon (sc_kerneld) is creating and killing modules and processes. Some time consuming system
work of the kernel (such as module and process killing) returns to the caller without having finished all related work.
The Kernel Daemon is doing such work at appropriate level.

Whenever you are using process or module create or kill system calls you need to start the kernel daemon.

Configuration Tree Structure |
scigrtaHello Sciopta
=2 & HelloSciopta

Isc_kemeld

Priority Process Name

=N # HelloSciopta
5----j,’;'in'rt Priority Process Function Isu:_kemeld
@ defaut Stack Size 2048
i 40k sc_kemeld . s
Al 5CL_sysTick i b3
é----ﬁdisplay Process State I started "I
- $fhelo Process Mode I Supervisor 'I

Ina FPU "'l

FPL usage

A Kernel Daesmon

Figure 6. Kernel Daemon Declaration in SCONF

The kernel daemon is part of the kernel. But to use it you need to define and declare it in the SCONF configuration
utility.

The kernel daemon can only be cleared and placed in the system module.

4.11 Process Stacks

When creating processes either statically in the SCONF configuration tool or dynamically with the
sc procPrioCreate, sc procIntCreate, sc procTimCreate in Kernel V1 or sc procCreate? in Kernel V2 and V2INT
system calls you always need to give a stack size.

All process types (init, interrupt, timer, prioritized and daemon) need a stack.

The stack size given must be big enough to hold the call stack and the maximum used local data in the process.

<>
17 SCIOPTA
-«

SCIOPTA_KernelReference.pdf#sc_procPrioCreate
SCIOPTA_KernelReference.pdf#sc_procIntCreate
SCIOPTA_KernelReference.pdf#sc_procTimCreate
SCIOPTA_KernelReference.pdf#sc_procCreate2

SCIOPTA Architecture Manual v1.1

When you start designing a system it is good design practice to define a the stack as large as possible. In a later
stage you can measure the used stack with the SCIOPTA DRUID system level debugger or the sc procAttrGet
system call (Kernel V2 and V2INT only) and reduce the stacks if needed.

4.11.1 Unified Interrupt Stack for ARM Architecture

Only for Kernel V1.
For the ARM architecture a unified interrupt stack can be used in interrupt and timer processes. In this case
all interrupt and timer processes share the same stack.

The "unified IRQ stack" checkbox must be selected in the system configuration window of the SCONF utility
to enable this feature.

The stack size given must be big enough to hold the stacks of the interrupt processes with the biggest stack
needs taken in account the interrupt nesting.

4.11.2 Interrupt Nesting for ARM Architecture

Only for Kernel V1:
If interrupt process nesting is used in the ARM architecture, the maximum nesting level of interrupt
processes must be declared in the system configuration (SCONF).

4.12 Stack Protector

Only for Kernel V2 and V2INT on PowerPC:
In a SCIOPTA system you can enable a stack protection called stack protector.

This is a function supplied by the compiler manufacturer which checks if the stack frame of a called function
still fits in the stack. The compiler will add a function prologue to each function which will be stack protected.

For the Windriver PowerPC compiler a function using this feature must be compiled with the -Xstack-probe
switch.

SCIOPTA needs to know if stack protector is used as it allocates a global variable for this purpose. You can
enable stack protector in the SCONF configuration tool.

4.13 Addressing Processes

4.13.1 Introduction

In a typical SCIOPTA design you need to address processes. For example you want to

« send SCIOPTA messages to a process
« kill a process

e get a stored name of a process

» observe a process

 get or set the priority of a process

« start and stop processes

sC 6P'I'A 18
-«

SCIOPTA_KernelReference.pdf#sc_procAttrGet

SCIOPTA Architecture Manual v1.1

In SCIOPTA you are addressing processes by using their process ID (pid). There are two methods to get process
IDs depending if you have to do with static or dynamic processes.

4.13.2 Get Process IDs of Static Processes

Static processes are created by the kernel at start-up. They are designed with the SCIOPTA SCONF configuration
utility by defining the name and all other process parameters such as priority and process stack sizes.

You can address static process by appending
_pid

to the process name if the process resides in the system module. If the static process resides inside another
module than the system module, you need to precede the process name with the module name and an underscore
in between.

For instance if you have a static process defined in the system module with the name controller you can address it
by giving controller_pid. To send a message to that process you can use:

sc_msgTx(mymsg, controller_pid, SC_MSGTX_NO_FLAG);

If you have a static process in the module tcs (which is not the system module) with the name display you can
address it by giving tcs_display_pid. To send a message to that process you can use:

sc_msgTx(mymsg, tcs_display_pid, SC_MSGTX_NO_FLAG);

4.13.3 Get Process IDs of Dynamic Processes

Dynamic processes can be created and killed during run-time. Often dynamic processes are used to run multiple
instances of common code.

The process IDs of dynamic processes can be retrieved by using the system call sc_procIdGet.
The process creation system calls sc_procPrioCreate, sc procIntCreate and sc procTimCreate in Kernel V1 and

the sc procCreate? in Kernel V2 and V2INT will also return the process IDs which can be used for further
addressing.

4.14 Process Variables

Each process can store local variables inside a protected data area. Process variables are variables which can only
be accesses by functions wthin the context of the process.

The process variable are usually maintained inside a SCIOPTA message and managed by the kernel. The user can
access the process variable by specific system calls.

19 SCIOPTA
-«

SCIOPTA_KernelReference.pdf#sc_procIdGet
SCIOPTA_KernelReference.pdf#sc_procPrioCreate
SCIOPTA_KernelReference.pdf#sc_procIntCreate
SCIOPTA_KernelReference.pdf#sc_procTimCreate
SCIOPTA_KernelReference.pdf#sc_procCreate2

SCIOPTA Architecture Manual v1.1

Process Control Block
PCB

Process Variables Message

Pointer | Message D

Reserved by the Kemel

TAG 1 ‘
Variable 1
TAG 2
Variable 2
TAG 3
Variable 3

TAG 4 Process Variables
Variable 4

TAGn
Variable n ‘

Figure 7. SCIOPTA Process Variables

There can be one process variable data area per process. The user needs to allocate a message to hold the
process variables. Each variable is preceded by a user defined tag which is used to access the variable. The tag
and the process variable have a fixed size large enough to hold a pointer.

It is the user's responsibility to allocate a big enough message buffer to hold the maximum needed number of
process variables. The message buffer holding the variable array will be removed from the process. The process
may no longer access this buffer directly. But it can retrieve the buffer if for instance the number of variables must
be changed.

4.15 Process Observation

Communication channels between processes in SCIOPTA can be observed no matter if the processes are local or
distributed over remote systems. The process calls sc_procObserve which includes the pointer to a return message
and the process ID of the process which should be observed.

If the observed process dies the kernel will send the defined message back to the requesting process to inform it.
This observation works also with remote process lists in connectors. This means that not only remote processes
can be observed but also connection problems in communication links if the connectors includes the necessary
functionality.

sC ﬁPTA 20
-«

SCIOPTA_KernelReference.pdf#sc_procObserve

SCIOPTA Architecture Manual v1.1

sc_procObserve system call:

Registration of observation of Kernel
Process B requesting the

message B_killed as returned /(/
information.

Process A
B_killed

sc_procObserve()

Message B_killed is returned by the
kernel to inform Process A of the
killing of Process B.

Process B

Figure 8. SCIOPTA Process Observation

21

-
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

5 Messages

5.1 Introduction

SCIOPTA is a so called Message Based Real-Time Operating System. Interprocess communication and
coordination is done by messages. Message passing is a very fast, secure, easy to use and good to debug method.

Messages are the preferred method for interprocess communication in SCIOPTA. SCIOPTA is specifically
designed to have a very high message passing performance. Messages can also be used for interprocess
coordination or synchronization duties to initiate different actions in processes. For this purposes messages can but
do not need to carry data.

A message buffer (the data area of a message) can only be accessed by one process at a time which is the owner
of the message. A process becomes owner of a message when it allocates the message by the sc msgAlloc
system call or when it receives the message by the sc_msgRx system call.

Message passing is also possible between processes on different CPUs. In this case specific communication
process types on each side will be needed called SCIOPTA Connector Processes.

5.2 Message Structure

Every SCIOPTA message has a message identity and a range reserved for message data which can be freely
accessed by the user. Additionally there is a hidden data structure which will be used by the kernel. The user can
access this information by specific SCIOPTA system calls. The following information are stored in the message
header:

* Process ID of message owner

* Message size

e Process ID of transmitting process

e Process ID of addressed process

DATA
owner J L message D ?
end mark
size
transmitter _
addressee — | - user accessible -
intemal use

Figure 9. SCIOPTA Message Structure

When a process allocates a message it becomes the owner of the message. If the process transmits the message
to another process, then this one becomes the owner. After transmitting, the sending process cannot access the
message any more. This message ownership feature eliminates access conflicts in a clean and efficient way.

sC 6P'I'A 22
-«

SCIOPTA_KernelReference.pdf#sc_msgAlloc
SCIOPTA_KernelReference.pdf#sc_msgRx

SCIOPTA Architecture Manual v1.1

Each process has a message queue for incoming and one for owned messages. Messages are not moved into
these queues but rather linked to it.
5.3 Message Size

The user may allocate messages with any arbirtrary number of bytes. The returned message may be larger as the
kernel chooses the best fitting message from a list of 4,8 or 16 different buffer sizes. These are defined when the
pool is created.

The difference of requested bytes and returned bytes can not be accessed by the user and will be unused at this
moment. It is therefore very important to select the buffer sizes to match as close as possible those needed by your
application to waste as little memory as possible.

This pool buffer manager used by SCIOPTA is a very well known technique in message based systems. The
SCIOPTA memory manager is very fast and deterministic. Memory fragmentation is completely avoided. But the
user has to select the buffer sizes very carefully otherwise there can be unused memory in the system.

As you can have more than one message pool in a SCIOPTA system and you can create and kill pools at every
moment the user can adapt message sizes very well to system requirements at different system states because
each pool can have a different set of buffer sizes.

By analysing a pool after a system run you can find out unused memory and optimise the buffer sizes.

5.3.1 Example

A message pool is created with 8 buffer sizes with the following sizes: 4, 10, 20, 80, 200, 1000, 4048, 16000.

If a message is allocated from that pool which requests 300 bytes, the system will return a buffer with 1000 bytes.
The difference of 700 bytes is not accessible by the user.

If 300 bytes buffer are used more often, it would be good design to modify the buffer sizes for this pool by changing
the size 200 to 300.

5.4 Message Pool

Messages are the main data object in SCIOPTA. Messages are allocated by processes from message pools. If a
process does not need the messages any longer it will free the message and return it to the pool. After this the
process may no longer access the message.

Please consult "Pools" for more information about message pools.

5.5 Message Passing

Message passing is the favourite method for interprocess communication in SCIOPTA. Contrary to mailbox
interprocess communication in traditional real-time operating systems SCIOPTA is passing messages directly from
process to process.

Only messages owned by the process can be transmitted. A process will become owner if the message is allocated
from the message pool or if the process has received the message. When allocating a message by the
sc_msgAlloc system call the user has to define the message ID.

The sc _msgAlloc or the sc_msaRx calls returns a pointer to the allocated message. The pointer allows the user to
access the message data to initialize or modify it.

The sending process transmits the message by calling the sc_msaTx system call. SCIOPTA changes the owner of
the message to the kernel and puts the message in the queue of the receiver process. It is a linked list of all

23 SCI:PTA
-«

SCIOPTA_KernelReference.pdf#sc_msgAlloc
SCIOPTA_KernelReference.pdf#sc_msgAlloc
SCIOPTA_KernelReference.pdf#sc_msgRx
SCIOPTA_KernelReference.pdf#sc_msgTx

SCIOPTA Architecture Manual v1.1

messages in the pool transmitted to this process.

If the receiving process is blocked at the sc_msgRx system call and is waiting on the transmitted message the kernel
is performing a process swap and activates the receiving process. After reception, the process becomes owner of
the process and gets the pointer to access the message contents. The sc_msgRx supports selective receiving as
every message includes a message ID and sender.

If the received message is not needed any longer or will not be forwarded to another process it shall be returned to
the system by sc _msafree.

Process TX Process RX

|

|

|

I

sc_msgAlloc :

I

|

I

sc_msgTx - :
“ || | sc_msgRx

|

|

|

|

I
: sc_msgFree

|

|

Figure 10. SCIOPTA Message Passing

5.6 Message Declaration

The following method for declaring, accessing and writing message buffers minimizes the risk for bad message
accesses and provides standardized code which is easy to read and to reuse.

Very often designers of message passing real-time systems are using for each message type a separate message
file as include file. Every process can use specific messages by just using a simple include statement for this
message.

The SCIOPTA message declaration syntax can be divided into three parts:

¢ Message identifier definition
e Message structure definition

* Message union declaration

5.6.1 Message ldentifier

5.6.1.1 Description

The declaration of the message identifier is usually the first line in a message declaration file. The message
number can also be described as message class. Each message class should have a unique message number for
identification purposes.

We recommend to write the message name in upper case letters.

sC 6P'I'A 24
-«

SCIOPTA_KernelReference.pdf#sc_msgRx
SCIOPTA_KernelReference.pdf#sc_msgRx
SCIOPTA_KernelReference.pdf#sc_msgFree

SCIOPTA Architecture Manual v1.1

5.6.1.2 Syntax

#define MESSAGE_NAME (<msg_nr>)

5.6.1.3 Parameter

msg_nr Message ldentifier (ID).

5.6.2 Message Structure

5.6.2.1 Description

Immediately after the message number declaration usually the message structure declaration follows. We
recommend to write the message structure name in lower case letters in order to avoid mixing up with message
number declaration.

The message ID (or message number) id must be the first declaration in the message structure. It is used by the
SCIOPTA kernel to identify SCIOPTA messages. After the message ID all structure members are declared. There
is no limit in structure complexity for SCIOPTA messages. It is only limited by the message size which you are
selecting at message allocation.

5.6.2.2 Syntax

struct <message_name>

sc_msgid_t id;
<member_type> <member>;

15

5.6.2.3 Parameter

message_name Name of the message.
id This the place where the message number (or message ID) will be stored.

member Message data member.

5.6.3 Message Union

5.6.3.1 Description

All processes which are using SCIOPTA messages should include the following message union declaration.
The union sc_msg is used to standardize a message declaration for files using SCIOPTA messages.

5.6.3.2 Syntax

union sc_msg
sc_msgid_t id;
<message_type_1> <message_name_1>

<message_type_2> <message_name_2>
<message_type_3> <message_name_3>

I

25 SCI:PTA
-«

SCIOPTA Architecture Manual v1.1

5.6.3.3 Parameter

id Message ID

Must be included in this union declaration. It is used by the SCIOPTA kernel to
identify SCIOPTA messages.

message_name_n Messages, the process will use.

5.7 Message Number (ID) Organization

Message numbers (also called message IDs) should be well organized in a SCIOPTA project.

5.7.1 Global Message Number Defines File

All message IDs greater than 0x80000000 are reserved for SCIOPTA internal messages and should not be used by
the application. These messages are defined in the file defines.h and sciopta.msg. Please consult these files for
managing and organizing the message IDs of your application.

defines.h System wide constant definitions.

File location: <installation_folder>\sciopta\<version>\include\ossys\

sciopta.msg System wide constant definitions.

File location: <installation_folder>\sciopta\<version>\include\

5.8 Example

#define CHAR_MSG (5)
typedef struct char_msg_s
{

sc_msgid_t id;

char character;
} char_msg_t;
union sc_msg

sc_msgid_t id;

char_msg_t char_msg;

SC_PROCESS (keyboard)
{

pointer */

s ID

sc_msg_t msg; /* Process message
sc_pid_t to; /* Receiving p

to = sc_procIdGet ("display", SC_NO_TMO); /* Get process

/* for process display
for (;;)
{
msg = sc_msgAlloc(sizeof (char_msg_t),
CHAR_MSG,
SC_DEFAULT_POOL,
SC_FATAL_IF_TMO); /* Allocates the message */
msg->char_msg.character = 0x40; /* Loads 0 5

sc_msgTx (&msg, to, SC_MSGTX_NO_FLAG); /* Sends mess

age to process display */

sc_sleep (1000); /* Waits 1000 ticks */

5.9 Messages and Modules

A process can only allocate a message from a pool inside the same module.

sC ﬁPTA 26
-«

SCIOPTA Architecture Manual v1.1

Messages transmitted and received within a module are not copied, only the pointer to the message is transferred.

Messages which are transmitted across modules boundaries are always copied if the Inter-Module setting in the
system configuration utility is set to "always copy". If it set to never copy, messages between modules are not
copied.

Kernel V1

A module can be declared as friend of another module. A message sent to a process in a friend module will
not be copied. But the returned message will, as the friend ship unilateral. To avoid this the receiver needs to
declare the sender also as friend.

To copy such a message the kernel will allocate a buffer from the default pool of the module where the receiving
process resides. It must be guaranteed that there is a big enough buffer in the receiving module available to fit the
message.

Module

System Module Module

| |

I I

I I

I I

) | |

process | \ o \

/ \\ 1 Y [1

.. A N 1
™ _____-—}‘R'___ 1 1 — :,.l/_’ |

T 1 1! -~
\ I -

pool | (pool | |pool

MMU Segment A MMU Segment B MMU Segment C

Figure 11. SCIOPTA Messages and Modules

5.10 Returning Sent Messages

There is a specific flag (SC_MSGTX_RTN2SNDR) in the sc_msgTx system call available to get messages back if it
was not possible to deliver it.

If this flag is set in sc_msgTx the message will be returned if the addressed process does not exist or there is not
enough space in the receiving message pool when sent to another module.

In this case the sender process must receive the message after it has been sent with the sc_msgRx system call.

5.11 Message Passing and Scheduling

SCIOPTA uses the pre-emptive prioritized scheduling for all prioritized process types. Timer process are scheduled
on a periodic base at well defined time intervals.

The process with the highest priority is running (owning the CPU). SCIOPTA maintains a list of all prioritized
processes which are ready. If the running process becomes not ready (i.e. waiting on at a message receive which
has not yet arrived) SCIOPTA will activate the next prioritized process with the highest priority. If there are more

27 SCI:PTA
-«

SCIOPTA_KernelReference.pdf#sc_msgTx
SCIOPTA_KernelReference.pdf#sc_msgTx
SCIOPTA_KernelReference.pdf#sc_msgRx

SCIOPTA Architecture Manual v1.1

than one processes on the same priority ready SCIOPTA will activate the process which became ready in a first-in-
first-out methodology.

Interrupt and timer process will always pre-empt prioritized processes. The intercepted prioritized process will
continue after the interrupt has finished unless a process with a higher priority became ready (e.g. by a message
fromt the interrupt process). In this case the CPU is given to the now highest priority process. The pre-emted
process will continue where interrupted when it became highest priority process again.

Timer processes run on the tick-level of the operating system.

The SCIOPTA kernel will do a re-scheduling at every, receive call, transmit call, process yield call, trigger wait call,
sleep call and all system time-out which have elapsed. There is no forced re-scheduling based on a tick unless
requested by the process by setting a time-slice.

Prioritized Priontized Prioritized Timer Interrupt

Process 1 Process 2 Process 3 Process Process
| priority 10 | priority 10 " priority 10 " interrupt | interrupt
| | priornty 8 priority &
| |
| |
[[
I | sc_msgRx I
| >)

Y — | Will be activated
lessage not in input | every third tick.

queue. Process now

|
|
I
I
|
I
I
|
|
swapped out and waiting. L sc_sleep(3) > |
' Sleeping for 3 ticks. Process '
| now swapped out and waiting. , I .
| ppl 9 interrupt > J_ | hﬁk_
I I retum I
I I I
| | |
I I . I .
| | interrupt > I]l::k_+1
| | - retum |
| | |
| Sleeping of three tick expired. w I
Message now armved Process ready and swapped in. .ig |
and received. Process | ™ | tick+2
ready and swappedin. [-------- | < e Y E itk Wiy
I I I
I < I I
| | |
| | . | .
interry tick+3
| | Pt >| f— J_ |
| | retum |
T —
| | |
| | |
I I I :
______ iy lick4
- I I

Figure 12. SCIOPTA Scheduling Sequence Example

5.12 Message Sent to Unknown Process

If the kernel receives a message which was sent to an undefined process, this message is transferred by the kernel
to the default connector process. In the process where the default connector is registered, an error handling can
then take place.

This means that each application should contain a default connector process.

If the message is sent with the flag SC_MSGTX_RTN2SND, then the message will stay with the sender.

sC 6P'I'A 28
-«

SCIOPTA Architecture Manual v1.1

5.12.1 Example

SC_PROCESS(sweepbus)
{

sc_msg_t msg;
(void)sc_connectorRegister(1); /* Register as default connector */
for (i)

msg = sc_msgRx(SC_ENDLESS_TMO, SC_MSGRX_ALL, MSGRX_MSGID);

/* Error handling */
sc_miscError (SC_ERR_SYSTEM_FATAL | 0x10000, (sc_extra_t)msg);

}
}

As soon a message does not have a correct receiver, the kernel is forwarding this message to process sweepbus.
In this process the error_hook is called.

6 Pools

Messages are the main data object in SCIOPTA. Messages are allocated by processes from message pools. If a
process does not need the messages any longer it will free it.

There can be up to 127 pools per module for a standard kernel. Please consult chapter "Modules" for more
information about the SCIOPTA module concept. The maximum number of pools will be defined at module
creation. A message pool always belongs to the module where it was created.

The size of a pool will be defined when the pool is created. By killing a module, all pools will also be deleted.
Pools can be created, killed and reset freely and at any time.

The SCIOPTA kernel is managing all existing pools in a system. Messages are maintained by double linked list in
the pool.

6.1 Message Pool Size

The minimum message pool size is the size of the maximum number of messages which ever are allocated at the
same time plus the pool control block (pool_cb).

The pool control block (pool_cb) can be calculated according to the following formula:
pool_cb =68 +n *20 + stat *n * 20
where:

n Number of buffer sizes

value 4,8, 16

stat Process statistics or message statistics
1 used

0 unused

29 SCI:PTA
-«

SCIOPTA Architecture Manual v1.1

6.2 Creating Pools

6.2.1 Static Pool Creation

Static pools are pools which are automatically created when the systems boots up. They are defined in the SCONF
configuration tool.

X4 Sciopta System Configuration C:/P/titi.xml

File Edit Module Help

Ded w

Configuration Tree Structure
scigFTa TS

El--

Create Pool
Create Inkerrupk Process
Create Timer Process

Create Prioriby Process

Delete Module

Figure 13. Pool Creation by SCONF

6.2.2 Dynamic Pool Creation

Another way is to create modules dynamically by the sc_poolCreate system call.

Dynamic Pool Creation

static const sc_bufsize_t bufsizes[8]=

4,
8,
16,
32,
64,
128,
256,
700
B8
myPool_plid = sc_poolCreate(
* start- "1'%',,‘; . @,
*/ 4000,
8,
bufsizes,
*/ "myPool"

);

sC 6P'I'A 30
-«

SCIOPTA_KernelReference.pdf#sc_poolCreate

SCIOPTA Architecture Manual v1.1

7 Hooks

7.1 Introduction

Hooks are user written functions which are called by the kernel at different location. They are only called if the user
defined them at configuration. User hooks are used for a number of different purposes and are target system
dependent.

Hooks need to be declared in the SCIOPTA kernel configuration SCONF. Please consult the SCIOPTA System
Manuals for more information.

Additionally you also need to declare hooks by using specific system calls.

7.2 Error Hook

The Error Hook is the most important user hook function and should normally be included in most of the systems.
An error hook can be used to log the error and additional data on a logging device if the kernel has detected an
error condition.

The error hook is described in "Error Handling".

7.3 Message Hooks

In SCIOPTA you can configure Message Transmit Hooks and Message Receive Hooks. These hooks are called
each time a message is transmitted to any process or received by any process. Transmit and Receive Hooks are
mainly used by user written debugger to trace messages.

Message hooks must be registered by using the sc_msgHookRegister system call.

7.4 Process Hooks

If the user has configured Process Create Hooks and Process Kill Hooks these hooks will be called each time if the
kernel creates or kills a process.

SCIOPTA allows to configure a Process Swap Hook. It is called by the kernel each time a new process is about to
be swapped in. This hook is also called if the kernel is entering idle mode.

Kernel V1:

Select MMU hook checkbox in the SCIOPTA kernel configuration SCONF to enable MMU/MPU support.

Kernel V2:

If the IRQ Swap hook is activated, then the swap hook is also called before an interrupt process is entered.

Process hooks must be registered by using the sc_procHookRegister system call.

7.5 Pool Hooks

Each time a pool is created or killed, the kernel is calling the Pool Create Hooks and Pool Kill Hooks if thes
hooks have been registerred by the sc_poolHookRegister system call.

3 l SCI:PTA
-«

SCIOPTA_KernelReference.pdf#sc_msgHookRegister
SCIOPTA_KernelReference.pdf#sc_procHookRegister
SCIOPTA_KernelReference.pdf#sc_poolHookRegister

SCIOPTA Architecture Manual v1.1

8 System Start and Setup

8.1 Start Sequence

After a system hardware reset the following sequence will be executed from point 1.

In the SCIOPTA SCSIM Simulator after Windows has started the SCIOPTA application by calling the sciopta_start
function inside the WinMain function the sequence will be executed from point 4.

. The kernel calls the function reset_hook.

. The kernel performs some internal initialization.

1
2
3. The kernel calls cstartup to initialize the C system.
4. The kernel calls the function start_hook.

5

. The kernel calls the function TargetSetup. The code of this function is automatically generated by the SCONF
configuration utility and included in the file sconf.c. TargetSetup creates the system module.

IS

The kernel calls the dispatcher.

7. The first process (init process of the system module) is swapped in.

The code of the following functions is automatically generated by the SCONF configuration utility and included
in the file sconf.c.

8. The init process of the system module creates all static modules, processes and pools.

9. The init process of the system module calls the system module start function. The name of the function
corresponds to the name of the system module.

10. The process priority of the init process of the system module is set to 32 and loops for ever.

11. The init process of each created static module calls the user module start function of each module. The name
of the function corresponds to the name of the respective module.

12. The process priority of the init process of each created static module is set to 32 and loops for ever.

13. The process with the highest system priority will be swapped-in and executed.

8.2 Reset Hook

In SCIOPTA a reset hook must always be present and must have the name reset_hook.
The reset hook must be written by the user.
After system reset the SCIOPTA kernel initializes a small stack and jumps directly into the reset hook.

The reset hook is mainly used to do some basic chip and board settings. The C environment is not yet initialized
when the reset hook executes. Therefore the reset hook should be written in assembler. For some C environments
it might be written in C.

There is no reset hook in the SCIOPTA Simulator.

8.2.1 Syntax

int reset_hook (void);

sC ﬁPTA 32
-«

SCIOPTA Architecture Manual v1.1

8.2.2 Parameter

None.

8.2.3 Return Value

1=0 The kernel will immediately call the dispatcher. This will initiate a warm start.

== The kernel will jump to the C startup function. This will initiate a cold start.

8.2.4 Location

Reset hooks are compiler manufacturer and board specific. Reset hook examples can be found in the SCIOPTA
Board Support Package deliveries.

resethook.S Very early hardware initialization code written in assembler.

The extension .S is used in GCC for assembler source files. For other compiler packages the
extensions for assembler source files might be different.

File location: <installation_folder>\sciopta\<version>\bsp\<arch>\<cpu>\<board>\src

8.3 C Startup

After a cold start the kernel will call the C startup function. It initializes the C system and replaces the library C
startup function. C startup functions are compiler specific.

There is no C startup function needed in the SCIOPTA Simulator.

8.4 Starting the SCIOPTA Simulator

Only for the SCIOPTA SCSIM Simulator:

You need to write the WinMain method and include the "sciopta_start" system call to implement a SCIOPTA WIN32
simulator application.

In the delivered SCIOPTA examples the WinMain method and the whole startup code is usually included in the file
system.c.

system.c SCIOPTA SCSIM Simulator setup including the WinMain method.

File location: <installation_folder>\sciopta\<version>\exp\krn\win32\hello\

8.4.1 Module Data RAM

In SCIOPTA system running in a real target CPU the module RAM memory map is defined in the linker scripts.

In the SCIOPTA SCSIM Simulator you need to declare the module RAM by a character array of the size of the
module.

8.5 Start Hook

The start hook must always be present and must have the name start_hook. The start hook must be written by the
user. If a start hook is declared the kernel will jump into it after the C environment is initialized.

The start hook is mainly used to do chip, board and system initialization. As the C environment is initialized it can

33 SCI:PTA
-«

SCIOPTA Architecture Manual v1.1

be written in C. The start hook would also be the right place to include the registration of the system error hook
(see "Error Hook Registering") and other kernel hooks.

8.5.1 Syntax

void start_hook (void);

8.5.2 Parameter

None.

8.5.3 Return Value

None.

8.5.4 Location

In the delivered SCIOPTA examples the start hook is usually included in the file system.c

system.c System configuration file including hooks (e.g. start_hook) and other setup code.

File location: <installation_folder>\sciopta\<version>\exp\<product>\<arch>\<example>\<board>\

8.6 Init Process

The init process is the first process in a module. Each module has at least one process and this is the init process.
At module start the init process gets automatically the highest priority (0). After the init process has done some
important work it will change its priority to the lowest level (32) and enter an endless loop.

Priority 32 is only allowed for the init process. All other processes are using priority 0 - 31. The INIT process acts
therefore also as idle process which will run when all other processes of a module are in the waiting state.

The init process of the system module will first be swapped-in followed by the init processes of all other modules.

The code of the module init Processes are automatically generated by the SCONF configuration utility and placed
in the file sconf.c. The module init Processes will automatically be named to <module_name>_init and created.

8.7 Module Start Functions

Please consult "Modules" for general information about SCIOPTA modules.

8.7.1 System Module Start Function

After all static modules, pools and processes have been created by the init Process of the system module the
kernel will call a system module start function. This is function with the same name as the system module and must
be written by the user. Blocking system calls are not allowed in the system module start function. All other system
calls may be used.

In the delivered SCIOPTA examples the system module start function is usually included in the file system.c:

system.c System configuration file including hooks (e.g. start_hook) and other setup code.

File location: <installation_folder>\sciopta\<version>\exp\<product>\<arch>\<example>\<board>\

sC ﬁPTA 34
-«

SCIOPTA Architecture Manual v1.1

8.8 User Module Start Function

All other user modules have also own individual module start functions. These are functions with the same name of
the respective defined and configured modules which will be called by the init process of each respective module.

After returning from the module start functions the init processes of these modules will change its priority to 32 and
go into sleep. These user module start functions can use all SCIOPTA system calls.

The user module start function does not have to be left. It does not have to become an idle process (set priority to
32).

35 SCI:PTA
-«

SCIOPTA Architecture Manual v1.1

9 SCIOPTA Trigger

9.1 Description

The trigger in SCIOPTA is a method which allows to synchronize processes even faster as with messages. With a
trigger, a process will be notified and woken-up by another process. Triggers are used only for process coordination
and synchronization and cannot carry data. Triggers should only be used if the designer has severe timing
problems and are intended for these rare cases where message passing would be too slow.

Each process has one trigger available. A trigger is an integer variable owned by the process. At process creation
the value of the trigger is initialized to one.

Process waiting
on the trigger

. Process issuing a
Trigger trigger event

sc_triggerWait() sc_trigger()

Figure 14. SCIOPTA Trigger

9.2 Using SCIOPTA Trigger

There are four system calls available to work with triggers. The sc_triggerWait call decrements the value of the
trigger and the calling process will be blocked and swapped out if the value gets negative or equal to zero. Only the
owner process of the trigger can wait for it. The process gets ready again when either the optional timeout expires
or the trigger variable become greater than zero by other processes calling sc_trigger. In case of an timeout, the
trigger is incremented by the same amount as it has been decremented before.

If the now ready process has a higher priority than the actual running process the operating system will preempt
the running process and execute the triggered process.

The sc_triggerValueSet system call allows to sets the value of a trigger. Only the owner of the trigger can set the
value. Processes can also read their own or other’s value of the trigger variable by the sc_triggerValueGet call.

Also interrupt processes have a trigger but they cannot wait on it. If a process is triggering an interrupt process, the
interrupt process gets a software event. This is the same as if an interrupt occurs. The user can investigate a flag
which informs if the interrupt process was activated by a real interrupt or woken-up by such a trigger event.

The trigger variable is bound to an upper limit of Ox7fffffff.
Trigger Example

This is the interrupt process activating the trigger of process trigproc *

sC 6P'I'A 36
-«

SCIOPTA_KernelReference.pdf#sc_triggerWait
SCIOPTA_KernelReference.pdf#sc_trigger
SCIOPTA_KernelReference.pdf#sc_triggerValueSet
SCIOPTA_KernelReference.pdf#sc_triggerValueGet

SCIOPTA Architecture Manual v1.1

extern sc_pid_t trigproc_pid
SC_INT_PROCESS(myint, src)
{
if (src == SC_PROC_WAKEUP_HARDWARE){
sc_trigger(trigproc_pid);
}
}
/* This is the prioritized process trigproc which waits on its trigger */
SC_PROCESS(trigproc)
{
/* At process creation the value of the trigger is initialized */
/* to zero. If this is not the case you have to initialize it with */

/* the sc_triggerValueSet() system call

for (;7)
{
sc_triggerWait(1,SC_ENDLESS_TMO); /* Process waits on the trigger */

x /

’* Trigger was activated by process myint

37 SCI:PTA
-«

SCIOPTA Architecture Manual v1.1

10 Time Management

10.1 Introduction

Time management is one of the most important tasks of a real-time operating system. There are many functions in
SCIOPTA which depend on time. A process can for example wait a specific time for a message to arrive or can be
suspended for a specific time or timer processes can be defined which are activated at periodic time intervals.

10.2 System Tick

Time is managed by SCIOPTA by a tick timer which can be selected and configured by the user.

Typical time values between two ticks range between one and 10 milliseconds.

10.3 Configuring the System Tick

The system tick is configured by the sciopta configuration utility SCONF (please consult the SCIOPTA Systems
Manuals for your specific CPU family).

10.4 External Tick Interrupt Process

An external tick interrupt process is usually included in the board support package.

systick.<ext> System tick interrupt process.

File location: <installation_folder>\sciopta\<version>\bsp\<arch>\<cpu>\

10.5 Tickless System

SCIOPTA scheduling does not depend on the system tick, therefore it is possible to run a SCIOPTA system
completely tickless if there is no need for timeouts.

10.6 Timeout Server

10.6.1 Introduction

SCIOPTA has a bhuilt-in message based time-out server. Processes can register a time-out job with the time-out
server. This done by the sc_tmoAdd system call which requests a time-out message from the kernel after a defined
time.

10.6.2 Using the Timeout Server

The caller needs to allocate a message and include the pointer to this message in the call. The kernel will send this
message back to the caller after the time has expired.

A time-out is requested by the sc_tmoAdd system call.

This is an asynchronous call, the caller will not be blocked.

The registered time-out can be cancelled by the sc_tmoRm call before the time-out has expired.

sC ﬁPTA 38
-«

SCIOPTA_KernelReference.pdf#sc_tmoAdd
SCIOPTA_KernelReference.pdf#sc_tmoAdd
SCIOPTA_KernelReference.pdf#sc_tmoRm

SCIOPTA Architecture Manual v1.1

11 Error Handling

11.1 Introduction
SCIOPTA has many built-in error check functions. The following list shows some examples.

1. When allocating a message it is checked if the requested buffer size is available and if there is still enough
memory in the message pool.
2. Process identifiers are verified in different kernel functions.

3. Ownership of messages are checked.

4. Parameters and sources of system calls are validated.
The kernel will detect if messages and stacks have been over written beyond its length.

Contrary to most conventional real-time operating systems, SCIOPTA uses a centralized mechanism for error
reporting, called Error Hook. In traditional real-time operating systems, the user needs to check return values of
system calls for a possible error condition. In SCIOPTA all error conditions will end up in the Error Hook. This
guarantees that all errors are treated and that the error handling does not depend on individual error strategies
which might vary from user to user.

11.2 Error Sequence Kernel V1

In SCIOPTA all error conditions will end up in an Error Hook. This guarantees that all errors are treated and that the
error handling does not depend on individual error strategies which might vary from user to user.

There are two error hooks available:

A. Module Error Hook
B. Global Error Hook

If the kernel detect an error condition it will first call the module error hook and if it is not available call the global
error hook. Error hooks are normal error handling functions and must be written by the user. Depending on the type
of error (fatal or nonfatal) it will not be possible to return from an error hook. If there are no error hooks present the
kernel will enter an infinite loop (at label SC_ERROR) and all interrupts are disabled.

Note: The use of module error hooks is deprecated

11.3 Error Sequence Kernel V2 and V2INT

For system wide fatal errors (error type: SC_ERR_SYSTEM_FATAL) the kernel will directly call the error hook.
For all other types of errors and warnings the error hook will be called if no error process is registered.

If there was a fatal module or process error (error types: SC_ERR_MODULE_FATAL or
SC_ERR_PROCESS_FATAL) and if an error process exists, the module or process will be stopped and then the
error process will be activated.

If there was a module or process warning (error types: SC_ERR_MODULE_WARNING or
SC_ERR_PROCESS WARNING) and if an error process exists it will be activated.

For double faults (e.g. a fault during error handling) the kernel jumps to the label sc_fatal and loops for ever with
interrupts disabled.

39 SCI:PTA
-«

SCIOPTA Architecture Manual v1.1

11.4 Error Hook Kernel V1

In SCIOPTA all error conditions will end up in the error hook. As already stated there are two error hooks available:
the Module Error Hook and the Global Error Hook.

An error hook can only use the following system calls:

sc_miscCrc

sc_miscCrcContd

sc_miscErrnoGet

sc_moduleIdGet
sc_moduleInfo

sc_moduleNameGet

sc_poolldGet
sc poollnfo
sc_procPpidGet
sc_procPrioGet

sc_procSliceGet

sc_procVarDel
sc_procVarGet
sc_procVarSet
sc_tickGet
sc_ticklength
sc_tickMs2Tick

sc_tickTick2Ms

Calculates a 16 bit CRC over a specified memory range.
Calculates a 16 bit CRC over an additional memory range.
Returns the process error number (errno) variable.

Returns the ID of a module.

Returns a snap-shot of a module control block (mcb).
Returns the name of a module

Returns the ID of a message pool.

Returns a snap-shot of a pool control block.

Returns the process ID of the parent (creator) of a process.
Returns the priority of a prioritized process.

Returns the time slice of a timer process.

Removes a process variable from the process variable data area.
Returns a process variable.

Defines or modifies a process variable.

Returns the actual kernel tick counter value.

Sets the current system tick length in micro seconds.
Converts a time from milliseconds into system ticks.

Converts a time from system ticks into milliseconds.

sc triggerValueGet Returns the value of a process trigger.

11.5 Error Hook Kernel V2 and V2INT

In SCIOPTA all error conditions will end up in the error hook.

Only one error hook can be registered in the whole system.

The error hook can only use the following system calls:

sc_miscCrc
sc_miscCrc32

sc_miscCrcContd

sc_miscCrcContd3?

sc_miscErrnoGet

<z
SCIOPTA
-«

Calculates a 16 bit CRC over a specified memory range.
Calculates a 32 bit CRC over a specified memory range.
Calculates a 16 bit CRC over an additional memory range.
Calculates a 32 bit CRC over an additional memory range.

Returns the process error number (errno) variable.

40

SCIOPTA_KernelReference.pdf#sc_miscCrc
SCIOPTA_KernelReference.pdf#sc_miscCrcContd
SCIOPTA_KernelReference.pdf#sc_miscErrnoGet
SCIOPTA_KernelReference.pdf#sc_moduleIdGet
SCIOPTA_KernelReference.pdf#sc_moduleInfo
SCIOPTA_KernelReference.pdf#sc_moduleNameGet
SCIOPTA_KernelReference.pdf#sc_poolIdGet
SCIOPTA_KernelReference.pdf#sc_poolInfo
SCIOPTA_KernelReference.pdf#sc_procPpidGet
SCIOPTA_KernelReference.pdf#sc_procPrioGet
SCIOPTA_KernelReference.pdf#sc_procSliceGet
SCIOPTA_KernelReference.pdf#sc_procVarDel
SCIOPTA_KernelReference.pdf#sc_procVarGet
SCIOPTA_KernelReference.pdf#sc_procVarSet
SCIOPTA_KernelReference.pdf#sc_tickGet
SCIOPTA_KernelReference.pdf#sc_tickLength
SCIOPTA_KernelReference.pdf#sc_tickMs2Tick
SCIOPTA_KernelReference.pdf#sc_tickTick2Ms
SCIOPTA_KernelReference.pdf#sc_triggerValueGet
SCIOPTA_KernelReference.pdf#sc_miscCrc
SCIOPTA_KernelReference.pdf#sc_miscCrc32
SCIOPTA_KernelReference.pdf#sc_miscCrcContd
SCIOPTA_KernelReference.pdf#sc_miscCrcContd32
SCIOPTA_KernelReference.pdf#sc_miscErrnoGet

SCIOPTA Architecture Manual v1.1

sc_moduleldGet Returns the ID of a module.
sc_modulelnfo Returns a snap-shot of a module control block (mcb).

sc moduleNameGet Returns the name of a module.

sc poolldGet Returns the ID of a message pool.
sc poolInfo Returns a snap-shot of a pool control block.

sc procAttrGet Returns process attributes.

sc_procPpidGet Returns the process ID of the parent (creator) of a process.

sc_procPrioGet Returns the priority of a prioritized process.

sc_procSliceGet Returns the time slice of a timer process.

sc_procVarDel Removes a process variable from the process variable data area.
sc procVarGet Returns a process variable.

sc procVarSet Defines or modifies a process variable.

sc_tickGet Returns the actual kernel tick counter value.

sc ticklength Sets the current system tick length in micro seconds.
sc_tickMs2Tick Converts a time from milliseconds into system ticks.

sc tickTick2Ms Converts a time from system ticks into milliseconds.

sc triggerValueGet Returns the value of a process trigger.

11.6 Error Information

When the error hook is called from the kernel, all information about the error are transferred in 32-bit error word
(parameter errcode). Please consult "Kernel Error Reference" for detailed description of the SCIOPTA error word.
There are also up to four additional 32-bit extra words (parameters extral ... extra3) available to the user.

Function Code Error Code Error Type
8 Bits 12 Bits 12 Bits
-t L >
32 Bits
-

Figure 15. 32-bit Error Word (Parameter: errcode)
The Function Code defines from which SCIOPTA system call the error was initiated.
The Error Code contains the specific error information.

The Error Type informs about the source and type of error.

-
41 SCIOPTA
-«

SCIOPTA_KernelReference.pdf#sc_moduleIdGet
SCIOPTA_KernelReference.pdf#sc_moduleInfo
SCIOPTA_KernelReference.pdf#sc_moduleNameGet
SCIOPTA_KernelReference.pdf#sc_poolIdGet
SCIOPTA_KernelReference.pdf#sc_poolInfo
SCIOPTA_KernelReference.pdf#sc_procAttrGet
SCIOPTA_KernelReference.pdf#sc_procPpidGet
SCIOPTA_KernelReference.pdf#sc_procPrioGet
SCIOPTA_KernelReference.pdf#sc_procSliceGet
SCIOPTA_KernelReference.pdf#sc_procVarDel
SCIOPTA_KernelReference.pdf#sc_procVarGet
SCIOPTA_KernelReference.pdf#sc_procVarSet
SCIOPTA_KernelReference.pdf#sc_tickGet
SCIOPTA_KernelReference.pdf#sc_tickLength
SCIOPTA_KernelReference.pdf#sc_tickMs2Tick
SCIOPTA_KernelReference.pdf#sc_tickTick2Ms
SCIOPTA_KernelReference.pdf#sc_triggerValueGet

SCIOPTA Architecture Manual v1.1

There are three error types in a SCIOPTA kernel.

SC _ERR_SYSTEM_FATAL System wide fatal error.
SC_ERR_MODULE_FATAL Module wide fatal error.
SC _ERR_PROCESS FATAL Process wide fatal error.

There are three error warnings in a SCIOPTA kernel.

SC _ERR_SYSTEM_WARNING System wide warning.
SC_ERR_MODULE_WARNING Module wide warning.

SC_ERR_PROCESS_WARNING Process wide warning.

11.7 Error Hook Registering

An error hook is registered by using the sc_miscErrorHookRegister system call.

Kernel V1:

If the error hook is registered from within the system module it is registered as a global error hook. In this
case the error hook registering will be done in the start hook.If the error hook is registered from within a
module which is not the system module it will be registered as a module error hook.

Note: Module error hook is deprecated.

Kernel V2 and V2INT:
The error hook can only be registered in the start hook.

11.8 Error Hook Declaration Syntax Kernel V1

11.8.1 Description

For each registered error hook there must be a declared error hook function.

11.8.2 Syntax

int <err_hook_name> (sc_errcode_t errcode, sc_extra_t extra, int user, sc_pcb_t *pcb)

. error hook code

I

11.8.3 Parameter

errcode Error word.

Error word containing the function code which defines from which SCIOPTA system call the error was
initiated, the error code which contains the specific error information and the error type which informs
about the source and type of error.

sC 6P'I'A 42
-«

SCIOPTA_KernelReference.pdf#sc_miscErrorHookRegister

SCIOPTA Architecture Manual v1.1

extra Error extra word.

Gives additional information depending on the error code.

user User/system error flag
I=0 User error

==0 System Error

pch Process control block.

Pointer to process control block of the process where the error occurred. Please consult pcb.h for
more information about the module control block structure.

11.8.4 Error Hook Example

sconf.h"

#include
#include
#include <

#if SC_ERR_HOOK ==
int error_hook(sc_errcode_t err,void *ptr,int user,sc_pcb_t *pcb)

kprintf(9,"Error\n %081x(%s,line %d in %s) %081x %81x %081x %081x\n",
(int)pcb>1 ? peb->pid:0,
(int)pcb>1 ? pcb->name:"xx",
(int)pcb>1 ?peb->cline:0,
(int)pcb>1 ?peb->cfile:"xx",
pcb,
err,
ptr,
user);
if (user != 1 && ((err>>12)&0xfff) <= SC_MAXERR && (err>>24) <= SC_MAXFUNC)
{
kprintf(@,"Function: %s\nError: %s\n",
func_txt[err>>24],
err_txt[(err>>12)&0xfff]);
return 0;

b
#endif

11.9 Error Hook Declaration Syntax Kernel V2 and V2INT

11.9.1 Description

For each registered error hook there must be a declared error hook function.

11.9.2 Syntax
void <err_hook_name> (sc_errcode_t err, const sc_errMsg_t *erriMsg)
. error hook code
b8
11.9.3 Parameter

err Error word.

Error word containing the function code which defines from which SCIOPTA system call the error was
initiated, the error code which contains the specific error information and the error type which informs
about the source and type of error.

43 SCI:PTA
-«

errMsg

SCIOPTA Architecture Manual v1.1

Pointer to the error message pointer.

Message is filled by the kernel error handling.

11.9.4 Kernel Error Message Structure

typedef stru
uint32_t
sc_errcode
sc_extra_t
sc_extra_t
sc_extra_t
sc_extra_t
sc_module_
sc_peb_t
sc_module_
sc_peb_t

} sc_errMsg_

11.9.4.1 Str

user

error

extra

cmcb

cpcb

emchb

epcb

ct sc_errMsg_s {
user;
_t error;
extraf;
extral;
extral;
extra3;
cb_t *cmeb; // Current active module
*cpeb;
cb_t *emcb; // Module where error occured
*epcb;
€5

ucture Members

User/system error flag
=0 User error

== System Error

Error word

Error word containing the function code which defines from which SCIOPTA system call the error was
initiated, the error code which contains the specific error information and the error type which informs
about the source and type of error.

System specific extra error words

extra0 Please consult "Kernel Error Reference"” for description.
extral Please consult "Kernel Error Reference" for description.
extra2 Please consult "Kernel Error Reference" for description.

extra3 Please consult "Kernel Error Reference" for description.

Module control block.

Pointer to the current module control block. Please consult module.h for more information about the
module control block structure.

Process control block.

Pointer to the current process control block. Please consult pcb.h for more information about the
module control block structure.

Module control block.

Pointer to module control block of the module where the error occurred. Please consult module.h for
more information about the module control block structure.

Process control block.

sC 6P'I'A 44
-«

SCIOPTA Architecture Manual v1.1

Pointer to process control block of the process where the error occurred. Please consult pcb.h for
more information about the module control block structure.

11.9.5 Header Files

misc.h Miscellaneous defines.
module.h Module defines including module control block (mcb).
pcb.h Process defines including process control block (pchb).

File location: <installation_folder>\sciopta\<version>\include\kernel2\

11.9.6 Error Hook Example

#include "
#include <s
#include <s
#include <ossys/e

void error_hook(sc_errcode_t err,const sc_errMsg_t *errMsg)
sc_pcb_t *peb = errMsg->pcb;

kprintf(9,"%s-Error\n"
" %081x(%s,line %d in %s)\n"
" pcb = %081x err = %081x extra = %081x,%081x,%081x,%081x\n",
errMsg->user ? "User" : "System",
pcb ? ERR_PCB_PID:0,
pcb ? ERR_PCB_NAME:"xx",
pcb ? pcb->cline:0,
pcb ? peb->cfile:"xx",
pcb,
err,
errMsg->extra@,errMsg->extral,errMsg->extra2,errMsg->extra3);

if (errMsg->user != 1 && ((err>>12)&0xfff) <= SC_MAXERR && (err>>24) <= SC_MAXFUNC)
{
kprintf(@,"Function: %s\nError: %s\n",
func_txt[err>>24],
err_txt[(err>>12)&0xfff]);

}
kprintf(@,"<stopped>\n");

11.10 Error Hooks Return Behaviour Kernel V1

The actions of the kernel after returning from the module or global error hook depend on the error hook return
values and the error types as described in the following table.

Global Error Hook Module Error Hook Error Action
Type
exists return exists return Module
value value Error
Fatal
No - No - X Endless Loop.
Yes 0 No - Yes Endless Loop.
Yes 0 No - No Endless Loop.
Yes 1 No - Yes Kill module and swap out.
Yes 1 No - No Return & continue.

45 SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

11.11 Error Process Kernel V2 and V2INT

Contrary to the error hook the error process can use all non-blocking SCIOPTA system calls. The error process
runs in the context of the init process.

Only one error process can be registered for the whole system.

11.11.1 Error Process Registering

The error process will be registered by calling sc_procAtExit in the init process of the system module. It behaves
like an interrupt process and should be as short as possible.

It should delegate the error-recovery and error-handling to an error proxy.

11.11.2 Example of an Error Process

#include "
#include

#include)
#tinclude <ossys/e

union sc_msg {
sc_msgid_t id;
sc_moduleKillMsg_t mKill;
sc_procKillMsg_t pKill;

;
void errorProcess(sc_errcode_t err,const sc_errMsg_t *errMsg)

{
#ifdef __DCC__
#pragma weak errorProxy_pid
#endif
extern sc_pid_t errorProxy_pid;
sc_msg_t msg;
error_hook(err,errMsg);
if (err & SC_ERR_MODULE_FATAL){
kprintf(1,
"Modul fatal error\n"
"Request killing\n");
msg = sc_msgAlloc(sizeof(sc_moduleKillMsg_t),
SC_MODULEKILLMSG,

0,
SC_NO_TMO);
if (Imsg){
kprintf(0,"Could not get a message\n");
return;

msg->mKill.mid = save_midGet(&errMsg->mcb->id);
msg->mKill.flags = 0;
} else if (err & SC_ERR_PROCESS_FATAL){
kprintf(1,
"Process fatal error\n"
"Request killing\n");
msg = sc_msgAlloc(sizeof(sc_procKillMsg_t),
SC_PROCKILLMSG,

9,
SC_NO_TMO);
if (Imsg){
kprintf(1,"Could not get a message\n");
return;

msg->pKill.pid = save_pidGet(&errMsg->pcb->pid);
msg->pKill.flag = 0;

} else {
return;

if (errorProxy_pid && errorProxy_pid != SC_ILLEGAL_PID){
sc_msgTx(&msg, errorProxy_pid, SC_MSGTX_RTN2SND);

if (msg){
sc_msgFree(&msg);
kprintf(@,"No errorProxy\n");

11.12 The Error Proxy Kernel V2 and V2INT

SCIOPTA 46
-«

SCIOPTA_KernelReference.pdf#sc_procAtExit

SCIOPTA Architecture Manual v1.1

The error proxy is a normal prioritized process which works on behalf of the error process. The error proxy is
optional and can use all SCIOPTA system calls.

Communication between error process and error proxy is done by normal SCIOPTA messages.

For example an error proxy can kill and create modules and processes.

11.12.1 Example

#include "
#include <sci
#include -
#include <os

union sc_msg {
sc_msgid_t id;
sc_moduleKillMsg_t mKill;
sc_procKillMsg_t pKill;

’

SC_PROCESS(errorProxy)
{

static const sc_msgid_t sel[3] = {
SC_MODULEKILLMSG,
SC_PROCKILLMSG,
0

B

sc_msg_t msg;

for(;;){

msg = sc_msgRx(SC_ENDLESS_TMO, NULL, SC_MSGRX_MSGID);

switch(msg->id){

case SC_MODULEKILLMSG:
sc_moduleKill(msg->mKill.mid,msg->mKill.flags);
sc_msgFree(&msg);
break;

case SC_PROCKILLMSG:
sc_procKill(msg->pKill.pid, msg->pKill.flag);
sc_msgFree(&msg);
break;

default:
sc_miscError (SC_ERR_SYSTEM_FATAL,msg->id);

11.13 The errno Variable

Each SCIOPTA process has an errno variable. This variable is used mainly by library functions. The errno variable
can only be accessed by some specific SCIOPTA system calls.

The errno variable will be copied into the observe messages if the process dies.

47 SCIgPTA
-«

SCIOPTA Architecture Manual v1.1

12 Distributed Systems

12.1 Introduction

SCIOPTA is a message based systems and therefore very well suited to support distributed multi-CPU systems.
For an application programmer it does not matter if he is transmitting a message to a process on the same CPU or
on a remote CPU. He will use exactly the same system calls. The SCIOPTA kernels and the SCIOPTA
CONNECTOR processes have knowledge of the whole distributed environment and they take care of all details
when messages need to be sent beyond CPU boundaries.

12.2 Connectors

CONNECTORSs are specific SCIOPTA processes and responsible for linking a number of SCIOPTA Systems.
There may be more than one CONNECTOR process in a system or module. CONNECTOR processes can be seen
globally inside a SCIOPTA system by other processes. The name of a CONNECTOR process represents the name
of the remote system.

There must be one connector per remote system.

SCIOPTA System A

SCIOPTA System B

connecTor | Remate

Process
P pracess

II "
I \

Figure 16. SCIOPTA Distributed Systems

12.3 Transparent Communication

If a process in one system (CPU) wants to communicate with a process in another system (CPU) it first will search
for the remote process by using the sc_procldGet system call. The parameter of this call includes the process
name and the path to where to find it in the form:

/Iremote-system/module/procname

If the process does not reside on the same CPU as the caller, the kernel transmits a message to the CONNECTOR
process including the inquiry. If the path and process is found in the remote process list, the CONNECTOR will
assign a free PID for the system and send a reply message back to the kernel including the assigned PID. The
kernel returns the PID to the caller process.

The process can now transmit and receive messages to the (remote) process using the returned PID as if the
process is local. A similar remote process list is created in the CONNECTOR of the remote system. Therefore the
receiving process on the remote system can work with remote systems the same way as if these processes where
local.

sC 6P'I'A 48
-«

SCIOPTA_KernelReference.pdf#sc_procIdGet

SCIOPTA Architecture Manual v1.1

12.4 Unknown Process

If the kernel receives a message which was sent to an undefined process, this message is transferred by the kernel
to the default connector process.

Please consult "Message Sent to Unknown Process" for a detailed description.

49 SCIOPTA
-«

13 Manual Versions

13.1 Initial

« |nitial version.

13.2 Typos

¢ Fix links

13.3 Chapter folding

« Initial chapters are folded.
e Some clarifcations.

« Layout fixes.

<z
SCIOPTA
-«

SCIOPTA Architecture Manual v1.1

50

	SCIOPTA Architecture Manual v1.1
	Contents
	1 SCIOPTA Real-Time Operating System
	1.1 Introduction
	1.2 CPU Families
	1.3 SCIOPTA Kernels
	1.4 About this Manual
	1.5 SCIOPTA Reference Manual
	1.6 SCIOPTA Getting Start Manuals
	1.7 SCIOPTA Kernel Configuration SCONF Manuals

	2 Introduction
	2.1 SCIOPTA Kernel V2

	3 Modules
	3.1 Introduction
	3.2 System Module
	3.3 Module Priority
	3.3.1 Kernel V1
	3.3.2 Kernels V2 and V2INT

	3.4 System Protection
	3.5 SCIOPTA Module Friend Concept
	3.5.1 Kernel V1
	3.5.2 Kernels V2 and V2INT

	3.6 Module Creation
	3.6.1 Static Module Creation
	3.6.2 Dynamic Module Creation

	4 Processes
	4.1 Introduction
	4.2 Process States
	4.2.1 Running
	4.2.2 Ready
	4.2.3 Waiting

	4.3 Static Processes
	4.4 Dynamic Processes
	4.5 Process Identity
	4.6 Prioritized Processes
	4.6.1 Creating and Declaring Prioritized Processes
	4.6.2 Process Priorities
	4.6.3 Writing Prioritized Processes
	4.6.3.1 Process Declaration Syntax
	4.6.3.2 Process Template

	4.7 Interrupt Processes
	4.7.1 Creating and Declaring Interrupt Processes
	4.7.2 Interrupt Process Priorities
	4.7.3 Writing Interrupt Processes
	4.7.3.1 Interrupt Process Declaration Syntax
	4.7.3.2 Interrupt Source Parameter irq_src
	4.7.3.3 Interrupt Source Parameter Values
	4.7.3.4 Interrupt Vector Parameter vector
	4.7.3.5 Interrupt Process Template for Kernel V1
	4.7.3.6 Interrupt Process Template for Kernels V2 and V2INT

	4.8 Timer Processes
	4.8.1 Creating and Declaring Timer Processes
	4.8.2 Timer Process Priorities
	4.8.3 Writing Timer Processes

	4.9 Init Processes
	4.9.1 Creating and Declaring Init Processes
	4.9.2 Init Process Priorities
	4.9.3 Writing Init Processes

	4.10 Daemons
	4.10.1 Process Daemons
	4.10.2 Kernel Daemon

	4.11 Process Stacks
	4.11.1 Unified Interrupt Stack for ARM Architecture
	4.11.2 Interrupt Nesting for ARM Architecture

	4.12 Stack Protector
	4.13 Addressing Processes
	4.13.1 Introduction
	4.13.2 Get Process IDs of Static Processes
	4.13.3 Get Process IDs of Dynamic Processes

	4.14 Process Variables
	4.15 Process Observation

	5 Messages
	5.1 Introduction
	5.2 Message Structure
	5.3 Message Size
	5.3.1 Example

	5.4 Message Pool
	5.5 Message Passing
	5.6 Message Declaration
	5.6.1 Message Identifier
	5.6.1.1 Description
	5.6.1.2 Syntax
	5.6.1.3 Parameter

	5.6.2 Message Structure
	5.6.2.1 Description
	5.6.2.2 Syntax
	5.6.2.3 Parameter

	5.6.3 Message Union
	5.6.3.1 Description
	5.6.3.2 Syntax
	5.6.3.3 Parameter

	5.7 Message Number (ID) Organization
	5.7.1 Global Message Number Defines File

	5.8 Example
	5.9 Messages and Modules
	5.10 Returning Sent Messages
	5.11 Message Passing and Scheduling
	5.12 Message Sent to Unknown Process
	5.12.1 Example

	6 Pools
	6.1 Message Pool Size
	6.2 Creating Pools
	6.2.1 Static Pool Creation
	6.2.2 Dynamic Pool Creation

	7 Hooks
	7.1 Introduction
	7.2 Error Hook
	7.3 Message Hooks
	7.4 Process Hooks
	7.5 Pool Hooks

	8 System Start and Setup
	8.1 Start Sequence
	8.2 Reset Hook
	8.2.1 Syntax
	8.2.2 Parameter
	8.2.3 Return Value
	8.2.4 Location

	8.3 C Startup
	8.4 Starting the SCIOPTA Simulator
	8.4.1 Module Data RAM

	8.5 Start Hook
	8.5.1 Syntax
	8.5.2 Parameter
	8.5.3 Return Value
	8.5.4 Location

	8.6 Init Process
	8.7 Module Start Functions
	8.7.1 System Module Start Function

	8.8 User Module Start Function

	9 SCIOPTA Trigger
	9.1 Description
	9.2 Using SCIOPTA Trigger

	10 Time Management
	10.1 Introduction
	10.2 System Tick
	10.3 Configuring the System Tick
	10.4 External Tick Interrupt Process
	10.5 Tickless System
	10.6 Timeout Server
	10.6.1 Introduction
	10.6.2 Using the Timeout Server

	11 Error Handling
	11.1 Introduction
	11.2 Error Sequence Kernel V1
	11.3 Error Sequence Kernel V2 and V2INT
	11.4 Error Hook Kernel V1
	11.5 Error Hook Kernel V2 and V2INT
	11.6 Error Information
	11.7 Error Hook Registering
	11.8 Error Hook Declaration Syntax Kernel V1
	11.8.1 Description
	11.8.2 Syntax
	11.8.3 Parameter
	11.8.4 Error Hook Example

	11.9 Error Hook Declaration Syntax Kernel V2 and V2INT
	11.9.1 Description
	11.9.2 Syntax
	11.9.3 Parameter
	11.9.4 Kernel Error Message Structure
	11.9.4.1 Structure Members

	11.9.5 Header Files
	11.9.6 Error Hook Example

	11.10 Error Hooks Return Behaviour Kernel V1
	11.11 Error Process Kernel V2 and V2INT
	11.11.1 Error Process Registering
	11.11.2 Example of an Error Process

	11.12 The Error Proxy Kernel V2 and V2INT
	11.12.1 Example

	11.13 The errno Variable

	12 Distributed Systems
	12.1 Introduction
	12.2 Connectors
	12.3 Transparent Communication
	12.4 Unknown Process

	13 Manual Versions
	13.1 Initial
	13.2 Typos
	13.3 Chapter folding

